scholarly journals On the Second-Order Shape Derivative of the Kohn-Vogelius Objective Functional Using the Velocity Method

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Jerico B. Bacani ◽  
Julius Fergy T. Rabago

The exterior Bernoulli free boundary problem was studied via shape optimization technique. The problem was reformulated into the minimization of the so-called Kohn-Vogelius objective functional, where two state variables involved satisfy two boundary value problems, separately. The paper focused on solving the second-order shape derivative of the objective functional using the velocity method with nonautonomous velocity fields. This work confirms the classical results of Delfour and Zolésio in relating shape derivatives of functionals using velocity method and perturbation of identity technique.

2016 ◽  
Vol 23 (1) ◽  
pp. 195-215 ◽  
Author(s):  
François Bouchon ◽  
Gunther H. Peichl ◽  
Mohamed Sayeh ◽  
Rachid Touzani

A free boundary problem for the Stokes equations governing a viscous flow with over-determined condition on the free boundary is investigated. This free boundary problem is transformed into a shape optimization one which consists in minimizing a Kohn–Vogelius energy cost functional. Existence of the material derivatives of the states is proven and the corresponding variational problems are derived. Existence of the shape derivative of the cost functional is also proven and the analytic expression of the shape derivative is given in the Hadamard structure form.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Huang ◽  
Li-Ping Pang ◽  
Xi-Jun Liang ◽  
Zun-Quan Xia

We study optimization problems involving eigenvalues of symmetric matrices. We present a nonsmooth optimization technique for a class of nonsmooth functions which are semi-infinite maxima of eigenvalue functions. Our strategy uses generalized gradients and𝒰𝒱space decomposition techniques suited for the norm and other nonsmooth performance criteria. For the class of max-functions, which possesses the so-called primal-dual gradient structure, we compute smooth trajectories along which certain second-order expansions can be obtained. We also give the first- and second-order derivatives of primal-dual function in the space of decision variablesRmunder some assumptions.


Computation ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 82
Author(s):  
Alejandro Rincón ◽  
Gloria M. Restrepo ◽  
Fredy E. Hoyos

In this study, a novel robust observer-based adaptive controller was formulated for systems represented by second-order input–output dynamics with unknown second state, and it was applied to concentration tracking in a chemical reactor. By using dead-zone Lyapunov functions and adaptive backstepping method, an improved control law was derived, exhibiting faster response to changes in the output tracking error while avoiding input chattering and providing robustness to uncertain model terms. Moreover, a state observer was formulated for estimating the unknown state. The main contributions with respect to closely related designs are (i) the control law, the update law and the observer equations involve no discontinuous signals; (ii) it is guaranteed that the developed controller leads to the convergence of the tracking error to a compact set whose width is user-defined, and it does not depend on upper bounds of model terms, state variables or disturbances; and (iii) the control law exhibits a fast response to changes in the tracking error, whereas the control effort can be reduced through the controller parameters. Finally, the effectiveness of the developed controller is illustrated by the simulation of concentration tracking in a stirred chemical reactor.


Author(s):  
V. Calisti ◽  
A. Lebée ◽  
A. A. Novotny ◽  
J. Sokolowski

AbstractThe multiscale elasticity model of solids with singular geometrical perturbations of microstructure is considered for the purposes, e.g., of optimum design. The homogenized linear elasticity tensors of first and second orders are considered in the framework of periodic Sobolev spaces. In particular, the sensitivity analysis of second order homogenized elasticity tensor to topological microstructural changes is performed. The derivation of the proposed sensitivities relies on the concept of topological derivative applied within a multiscale constitutive model. The microstructure is topologically perturbed by the nucleation of a small circular inclusion that allows for deriving the sensitivity in its closed form with the help of appropriate adjoint states. The resulting topological derivative is given by a sixth order tensor field over the microstructural domain, which measures how the second order homogenized elasticity tensor changes when a small circular inclusion is introduced at the microscopic level. As a result, the topological derivatives of functionals for multiscale models can be obtained and used in numerical methods of shape and topology optimization of microstructures, including synthesis and optimal design of metamaterials by taking into account the second order mechanical effects. The analysis is performed in two spatial dimensions however the results are valid in three spatial dimensions as well.


1986 ◽  
Vol 16 (2) ◽  
pp. 221-224 ◽  
Author(s):  
Donald E. Carlson ◽  
Anne Hoger

1983 ◽  
Vol 29 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Tomikazu Namikawa ◽  
Hiromitsu Hamabata

The ponderomotive force generated by random Alfvén waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfvén waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfvén waves is also investigated.


Sign in / Sign up

Export Citation Format

Share Document