scholarly journals Agreement of Networks of Discrete-Time Agents with Mixed Dynamics and Time Delays

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Xue Li ◽  
Xueer Chen ◽  
Yingchun Xie

This paper considers agreement problems of networks of discrete-time agents with mixed dynamics and arbitrary bounded time delays, and networks consist of first-order agents and second-order agents. By using the properties of nonnegative matrices and model transformations, we derive sufficient conditions for stationary agreement of networks with bounded time delays. It is shown that stationary agreement can be achieved with arbitrary bounded time delays, if and only if fixed topology has a spanning tree and the union of the dynamically changing topologies has a spanning tree. Simulation results are also given to demonstrate the effectiveness of our theoretical results.

2002 ◽  
Vol 8 (2) ◽  
pp. 123-133 ◽  
Author(s):  
E. K. Boukas ◽  
P. Shi ◽  
M. Karan ◽  
C. Y. Kaya

This paper considers stochastic stability and stochastic stabilizability of linear discrete-time systems with Markovian jumps and mode-dependent time-delays. Linear matrix inequality (LMI) techniques are used to obtain sufficient conditions for the stochastic stability and stochastic stabilizability of this class of systems. A control design algorithm is also provided. A numerical example is given to demonstrate the effectiveness of the obtained theoretical results.


2013 ◽  
Vol 339 ◽  
pp. 366-371
Author(s):  
Jin Sheng Ren ◽  
Guang Chun Luo ◽  
Ke Qin

The goal of this paper is to give a universal design methodology of a Chaotic Neural Net-work (CNN). By appropriately choosing self-feedback, coupling functions and external stimulus, we have succeeded in proving a dynamical system defined by discrete time feedback equations possess-ing interesting chaotic properties. The sufficient conditions of chaos are analyzed by using Jacobian matrix, diagonal dominant matrix and Lyapunov Exponent (LE). Experiments are also conducted un-der a simple data set. The results confirm the theorem's correctness. As far as we know, both the experimental and theoretical results presented here are novel.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Liu ◽  
Kaiyu Qin ◽  
Wei Chen ◽  
Ping Li ◽  
Mengji Shi

Due to the complex external environment, many multiagent systems cannot be precisely described or even cannot be described by an integer-order dynamical model and can only be described by a fractional-order dynamical model. In this paper, consensus problems are investigated for two types of fractional-order multiagent systems (FOMASs) with nonuniform time delays: FOMAS with symmetric time delays and undirected topology and FOMAS with asymmetric time delays and directed topology. Employing the Laplace transform and the frequency-domain theory, two delay margins are obtained to guarantee the consensus for the two types of FOMAS, respectively. These results are also suitable for the integer-order dynamical model. Finally, simulation results are provided to illustrate the effectiveness of our theoretical results.


2010 ◽  
Vol 88 (12) ◽  
pp. 885-898 ◽  
Author(s):  
R. Raja ◽  
R. Sakthivel ◽  
S. Marshal Anthoni

This paper investigates the stability issues for a class of discrete-time stochastic neural networks with mixed time delays and impulsive effects. By constructing a new Lyapunov–Krasovskii functional and combining with the linear matrix inequality (LMI) approach, a novel set of sufficient conditions are derived to ensure the global asymptotic stability of the equilibrium point for the addressed discrete-time neural networks. Then the result is extended to address the problem of robust stability of uncertain discrete-time stochastic neural networks with impulsive effects. One important feature in this paper is that the stability of the equilibrium point is proved under mild conditions on the activation functions, and it is not required to be differentiable or strictly monotonic. In addition, two numerical examples are provided to show the effectiveness of the proposed method, while being less conservative.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050240
Author(s):  
Xiao-Wen Zhao ◽  
Guangsong Han ◽  
Qiang Lai ◽  
Dandan Yue

The multiconsensus problem of first-order multiagent systems with directed topologies is studied. A novel consensus problem is introduced in multiagent systems — multiconsensus. The states of multiple agents in each subnetwork asymptotically converge to an individual consistent value in the presence of information exchanges among subnetworks. Linear multiconsensus protocols are proposed to solve the multiconsensus problem, and the matrix corresponding to the protocol is designed. Necessary and sufficient conditions are derived based on matrix theory, under which the stationary multiconsensus and dynamic multiconsensus can be reached. Simulations are provided to demonstrate the effectiveness of the theoretical results.


2019 ◽  
Vol 38 (6) ◽  
pp. 159-171 ◽  
Author(s):  
Vahid Mohammadnezhad ◽  
Mostafa Eslami ◽  
Hadi Rezazadeh

In this paper, we first study stability analysis of linear conformable fractional differential equations system with time delays. Some sufficient conditions on the asymptotic stability for these systems are proposed by using properties of the fractional Laplace transform and fractional version of final value theorem. Then, we employ conformable Euler’s method to solve conformable fractional differential equations system with time delays to illustrate the effectiveness of our theoretical results


2021 ◽  
Vol 19 (1 Jan-Jun) ◽  
Author(s):  
César Jiménez ◽  
I. Campos-Canton ◽  
L. J. Ontañón-García

This article provides undergraduates a useful tool for a better understanding of the time delay eect on a electronic circuit. The time delay eect is analyzed on this paper in a rst order dierential equation. This linear time delay is associated with the amplitude of a first-order dierential equation and is responsible of three responses: one of the responses is an dierential equation type in first-order without delay, another one of the responses is a dierential equation type in second-order and nally we have the response of a harmonic oscillator.The proposed circuit is an emulator that develop the three different responses mentioned above. Simulink-Matlab software was used to implement the time delay and simulate the dierential equation. This simulation results coincide with the theoretical results. In the same manner, the experimental results match those of the theory. The electronical circuits suggested consist of three blocks: an integrator block, a phase shift block and a gain block. The electrical circuit is composed of resistors, capacitors and operational ampliers.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Tingting Ma ◽  
Xinzhu Meng ◽  
Zhengbo Chang

We consider a stochastic one-predator-two-prey harvesting model with time delays and Lévy jumps in this paper. Using the comparison theorem of stochastic differential equations and asymptotic approaches, sufficient conditions for persistence in mean and extinction of three species are derived. By analyzing the asymptotic invariant distribution, we study the variation of the persistent level of a population. Then we obtain the conditions of global attractivity and stability in distribution. Furthermore, making use of Hessian matrix method and optimal harvesting theory of differential equations, the explicit forms of optimal harvesting effort and maximum expectation of sustainable yield are obtained. Some numerical simulations are given to illustrate the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Yurong Liu ◽  
Hamid Reza Karimi ◽  
Xiaohui Liu

The guaranteed cost control problem is investigated for a class of nonlinear discrete-time systems with Markovian jumping parameters and mixed time delays. The mixed time delays involved consist of both the mode-dependent discrete delay and the distributed delay with mode-dependent lower bound. The associated cost function is of a quadratic summation form over the infinite horizon. The nonlinear functions are assumed to satisfy sector-bounded conditions. By introducing new Lyapunov-Krasovskii functionals and developing some new analysis techniques, sufficient conditions for the existence of guaranteed cost controllers are derived with respect to the given cost function. Moreover, a convex optimization approach is applied to search for the optimal guaranteed cost controller by minimizing the guaranteed cost of the closed-loop system. Numerical simulation is further carried out to demonstrate the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document