scholarly journals A Comparative Numerical Study of the Spectral Theory Approach of Nishimura and the Roots Method Based on the Analysis of BDMMAP/G/1 Queue

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Arunava Maity ◽  
U. C. Gupta

This paper considers an infinite-buffer queuing system with birth-death modulated Markovian arrival process (BDMMAP) with arbitrary service time distribution. BDMMAP is an excellent representation of the arrival process, where the fractal behavior such as burstiness, correlation, and self-similarity is observed, for example, in ethernet LAN traffic systems. This model was first apprised by Nishimura (2003), and to analyze it, he proposed a twofold spectral theory approach. It seems from the investigations that Nishimura’s approach is tedious and difficult to employ for practical purposes. The objective of this paper is to analyze the same model with an alternative methodology proposed by Chaudhry et al. (2013) (to be referred to as CGG method). The CGG method appears to be rather simple, mathematically tractable, and easy to implement as compared to Nishimura’s approach. The Achilles tendon of the CGG method is the roots of the characteristic equation associated with the probability generating function (pgf) of the queue length distribution, which absolves any eigenvalue algebra and iterative analysis. Both the methods are presented in stepwise manner for easy accessibility, followed by some illustrative examples in accordance with the context.

2017 ◽  
Vol 31 (2) ◽  
pp. 139-179 ◽  
Author(s):  
Ioannis Dimitriou

We consider a single server system accepting two types of retrial customers, which arrive according to two independent Poisson streams. The service station can handle at most one customer, and in case of blocking, typeicustomer,i=1, 2, is routed to a separate typeiorbit queue of infinite capacity. Customers from the orbits try to access the server according to the constant retrial policy. We consider coupled orbit queues, and thus, when both orbit queues are non-empty, the orbit queueitries to re-dispatch a blocked customer of typeito the main service station after an exponentially distributed time with rate μi. If an orbit queue empties, the other orbit queue changes its re-dispatch rate from μito$\mu_{i}^{\ast}$. We consider both exponential and arbitrary distributed service requirements, and show that the probability generating function of the joint stationary orbit queue length distribution can be determined using the theory of Riemann (–Hilbert) boundary value problems. For exponential service requirements, we also investigate the exact tail asymptotic behavior of the stationary joint probability distribution of the two orbits with either an idle or a busy server by using the kernel method. Performance metrics are obtained, computational issues are discussed and a simple numerical example is presented.


2008 ◽  
Vol 40 (2) ◽  
pp. 548-577 ◽  
Author(s):  
David Gamarnik ◽  
Petar Momčilović

We consider a multiserver queue in the Halfin-Whitt regime: as the number of serversngrows without a bound, the utilization approaches 1 from below at the rateAssuming that the service time distribution is lattice valued with a finite support, we characterize the limiting scaled stationary queue length distribution in terms of the stationary distribution of an explicitly constructed Markov chain. Furthermore, we obtain an explicit expression for the critical exponent for the moment generating function of a limiting stationary queue length. This exponent has a compact representation in terms of three parameters: the amount of spare capacity and the coefficients of variation of interarrival and service times. Interestingly, it matches an analogous exponent corresponding to a single-server queue in the conventional heavy-traffic regime.


1971 ◽  
Vol 8 (3) ◽  
pp. 480-493 ◽  
Author(s):  
Hisashi Mine ◽  
Katsuhisa Ohno

Fixed-cycle traffic light queues have been investigated by probabilistic methods by many authors. Beckmann, McGuire and Winsten (1956) considered a discrete time queueing model with binomial arrivals and regular departure headways and derived a relation between the stationary mean delay per vehicle and the stationary mean queue-length at the beginning of a red period of the traffic light. Haight (1959) and Buckley and Wheeler (1964) considered models with Poisson arrivals and regular departure headways and investigated certain properties of the queue-length. Newell (1960) dealt with the model proposed by the first authors and obtained the probability generating function of the stationary queue-length distribution. Darroch (1964) discussed a more general discrete time model with stationary, independent arrivals and regular departure headways and derived a necessary and sufficient condition for the stationary queue-length distribution to exist and obtained its probability generating function. The above two authors, Little (1961), Miller (1963), Newell (1965), McNeil (1968), Siskind (1970) and others gave approximate expressions for the stationary mean delay per vehicle for fixed-cycle traffic light queues of various types. All of the authors mentioned above dealt with the queue-length.


Author(s):  
Yang Woo Shin ◽  
Chareles E. M. Pearce

AbstractWe treat a single-server vacation queue with queue-length dependent vacation schedules. This subsumes the single-server vacation queue with exhaustive service discipline and the vacation queue with Bernoulli schedule as special cases. The lengths of vacation times depend on the number of customers in the system at the beginning of a vacation. The arrival process is a batch-Markovian arrival process (BMAP). We derive the queue-length distribution at departure epochs. By using a semi-Markov process technique, we obtain the Laplace-Stieltjes transform of the transient queue-length distribution at an arbitrary time point and its limiting distribution


2019 ◽  
Vol 53 (2) ◽  
pp. 367-387
Author(s):  
Shaojun Lan ◽  
Yinghui Tang

This paper deals with a single-server discrete-time Geo/G/1 queueing model with Bernoulli feedback and N-policy where the server leaves for modified multiple vacations once the system becomes empty. Applying the law of probability decomposition, the renewal theory and the probability generating function technique, we explicitly derive the transient queue length distribution as well as the recursive expressions of the steady-state queue length distribution. Especially, some corresponding results under special cases are directly obtained. Furthermore, some numerical results are provided for illustrative purposes. Finally, a cost optimization problem is numerically analyzed under a given cost structure.


1988 ◽  
Vol 25 (1) ◽  
pp. 169-183 ◽  
Author(s):  
D. König ◽  
M. Miyazawa

For the delayed Bernoulli feedback queue with first come–first served discipline under weak assumptions a relationship for the generating functions of the joint queue-length distribution at various points in time is given. A decomposition for the generating function of the stationary total queue length distribution has been proven. The Laplace-Stieltjes transform of the stationary joint workload distribution function is represented by its marginal distributions. The arrival process is Poisson, renewal or arbitrary stationary, respectively. The service times can form an i.i.d. sequence at each queue. Different kinds of product form of the generating function of the joint queue-length distribution are discussed.


1989 ◽  
Vol 26 (1) ◽  
pp. 142-151 ◽  
Author(s):  
S. D. Sharma

This paper studies the transient and steady-state behaviour of a continuous and discrete-time queueing system with non-Markovian type of departure mechanism. The Laplace transforms of the probability generating function of the time-dependent queue length distribution in the transient state are obtained and the probability generating function of the queue length distribution in the steady state is derived therefrom. Finally, some particular cases are discussed.


1989 ◽  
Vol 26 (01) ◽  
pp. 142-151
Author(s):  
S. D. Sharma

This paper studies the transient and steady-state behaviour of a continuous and discrete-time queueing system with non-Markovian type of departure mechanism. The Laplace transforms of the probability generating function of the time-dependent queue length distribution in the transient state are obtained and the probability generating function of the queue length distribution in the steady state is derived therefrom. Finally, some particular cases are discussed.


1988 ◽  
Vol 25 (1) ◽  
pp. 228-231 ◽  
Author(s):  
Gordon E. Willmot

This note concerns the distribution of the equilibrium M/G/1 queue length. A representation for the probability generating function is given which allows for an explicit finite sum representation of the associated probabilities. The radius of convergence of the probability generating function and an asymptotic formula for the right tail of the distribution also follow from this representation, as well as infinite divisibility of the queue-length distribution when the service distribution is infinitely divisible. Extension of these results to the bulk arrival case is straightforward.


2017 ◽  
Vol 2 (4) ◽  
pp. 275 ◽  
Author(s):  
Andrzej Chydzinski

Batch Markovian Arrival Process – BMAP – is a teletraffic model which combines high ability to imitate complexstatistical behaviour of network traces with relative simplicity in analysis and simulation. It is also a generalization of a wide class of Markovian processes, a class which in particular include the Poisson process, the compound Poisson process, the Markovmodulated Poisson process, the phase-type renewal process and others. In this paper we study the main queueing performance characteristic of a finite-buffer queue fed by the BMAP, namely the queue length distribution. In particular, we show a formula for the Laplace transform of the queue length distribution. The main benefit of this formula is that it may be used to obtain both transient and stationary characteristics. To demonstrate this, several numerical results are presented.


Sign in / Sign up

Export Citation Format

Share Document