scholarly journals Induction of Thioredoxin Reductase 1 by Korean Red Ginseng Water Extract Regulates Cytoprotective Effects on Human Endothelial Cells

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hye Rim Park ◽  
Seung Eun Lee ◽  
Hana Yang ◽  
Gun Woo Son ◽  
Young-Ho Jin ◽  
...  

Korean Red Ginseng is a popular herbal medicine and is widely used in many food products. KRG has biological benefits related to vascular diseases including diabetes, hypertension, atherosclerosis, and other cardiac diseases and KRG has antioxidant and anti-hyperlipidemic actions. KRG decreases the level of oxidative stress and suppresses proinflammatory cytokines and cell adhesion molecules, thus protecting endothelial dysfunction. Mammalian Thioredoxin reductase 1 is an NADPH-dependent selenoprotein, essential for antioxidant defense and DNA synthesis and repair, that regulates the redox system by modulating redox-sensitive transcription factors and thiol-containing proteins. Here, we show that KRG water extract increases the expression of TrxR1 in human umbilical vein endothelial cells via the p38 and PKC-δsignaling pathways. The induction of TrxR1 expression by KRG was confirmed by Western blot analysis and reverse transcription polymerase chain reaction. However, the increase in TrxR1 expression was abolished by specific silencing of the p38 and PKC-δgenes. In addition, we demonstrated that auranofin, a TrxR1 inhibitor, weakens the protective effect of KRG against H2O2-induced cell death as measured by the terminal transferase dUTP nick end labeling assay. These results suggest that KRG may have protective effects in vascular diseases by upregulating TrxR1 in endothelial cells, thereby inhibiting the generation of reactive oxygen species and cell death.

2011 ◽  
Vol 89 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Tao Chen ◽  
Zai-pei Guo ◽  
Xiao-yan Jiao ◽  
Yu-hong Zhang ◽  
Jing-yi Li ◽  
...  

Peoniflorin (PF), extracted from the root of Paeonia lactiflora Pall., has been reported to have anti-inflammation and antioxidant effects in several animal models. Herein, we investigated the protective effects of PF against hydrogen peroxide (H2O2)-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). HUVECs were treated by H2O2 (240 µmol/L) with or without PF. PF significantly increased the percent cell viability of HUVECs injured by H2O2 using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. By flow cytometric analysis, PF markedly attenuated H2O2-induced apoptosis and intracellular reactive oxygen species production. In addition, PF also displayed a dose-dependent reduction of lactate dehydrogenase leakage, malondialdehyde formation, and caspase-3 proteolytic activities in H2O2-treated cells, which was accompanied with a restoration of the activities of endogenous antioxidants, including total superoxide dismutase and glutathione peroxidase. Finally, Western blot data revealed that H2O2 upregulated phosphorylation of extracellular signal-regulated kinase 1/2 in HUVECs, which was almost completely reversed by PF. Taken together, our data provide the first evidence that PF has a protective ability against oxidative damage in HUVECs. PF may be a candidate medicine for the treatment of vascular diseases associated with oxidative stress.


2011 ◽  
Vol 35 (3) ◽  
pp. 352-359 ◽  
Author(s):  
Ha-Na Yang ◽  
Seung-Eun Lee ◽  
Seong-Il Jeong ◽  
Cheung-Seog Park ◽  
Young-Ho Jin ◽  
...  

2005 ◽  
Vol 289 (4) ◽  
pp. H1669-H1675 ◽  
Author(s):  
John P. Cullen ◽  
Shariq Sayeed ◽  
Ying Jin ◽  
Nicholas G. Theodorakis ◽  
James V. Sitzmann ◽  
...  

The aim of this study was to determine the effect of ethanol (EtOH) on endothelial monocyte chemotactic protein-1 (MCP-1) expression. IL-1β increased the production of MCP-1 by human umbilical vein endothelial cells from undetectable levels to ∼900 pg/ml at 24 h. EtOH dose-dependently inhibited IL-1β-stimulated MCP-1 secretion as determined by ELISA: 25 ± 1%, 35 ± 7%, and 65 ± 5% inhibition for 1, 10, and 100 mM EtOH, respectively, concomitant with inhibition of monocyte adhesion to activated endothelial cells. Similarly, EtOH dose-dependently inhibited IL-1β-stimulated MCP-1 mRNA expression. Experiments with actinomycin D demonstrated that EtOH decreased the stability of MCP-1 mRNA. In addition, EtOH significantly reduced NF-κB and AP-1 binding activity induced by IL-1β and inhibited MCP-1 gene transcription. Binding of 125I-labeled MCP-1 to its receptor (CCR2) on THP-1 human monocytic cells was not affected by EtOH treatment. Modulation of the expression of MCP-1 represents a mechanism whereby EtOH could inhibit atherogenesis by blocking the crucial early step of monocyte adhesion and subsequent recruitment to the subendothelial space. These actions of EtOH may underlie, in part, its cardiovascular protective effects in vivo.


2008 ◽  
Vol 294 (3) ◽  
pp. H1119-H1129 ◽  
Author(s):  
Susann Patschan ◽  
Jun Chen ◽  
Alla Polotskaia ◽  
Natalja Mendelev ◽  
Jennifer Cheng ◽  
...  

Our group (Patschan S, Chen J, Gealekman O, Krupincza K, Wang M, Shu L, Shayman JA, Goligorsky MS; Am J Physiol Renal Physiol 294: F100–F109, 2008) previously observed an accumulation of gangliosides coincident with development of cell senescence and demonstrated lysosomal permeabilization in human umbilical vein endothelial cells exposed to glycated collagen I (GC). Therefore, we investigated whether the lysosome-dependent, caspase-independent or type 2-programmed cell death (autophagy) is involved in development of premature senescence of endothelial cells. The cleaved microtubule-associated protein 1 light-chain 3 (LC3), a marker of autophagosome formation, was overexpressed within 24 h of GC treatment; however, by 4–5 days, it was nearly undetectable. Early induction of autophagosomes was associated with their fusion with lysosomes, a phenomenon that later became subverted. Autophagic cell death can be triggered by the products of damaged plasma membrane, sphingolipids, and ceramide. We observed a clustering of membrane rafts shortly after exposure to GC; later, after 24 h, we observed an internalization, accompanied by an increased acid sphingomyelinase activity and accumulation of ceramide. Pharmacological inhibition of autophagy prevented development of premature senescence but did lead to the enhanced rate of apoptosis in human umbilical vein endothelial cells exposed to GC. Pharmacological induction of autophagy resulted in reciprocal changes. These observations appear to represent a mechanistic molecular cascade whereby advanced glycation end products like GC induce sphingomyelinase activity, accumulation of ceramide, clustering, and later internalization of lipid rafts.


2002 ◽  
Vol 92 (3) ◽  
pp. 1152-1158 ◽  
Author(s):  
Scott Earley ◽  
Leif D. Nelin ◽  
Louis G. Chicoine ◽  
Benjimen R. Walker

Nitric oxide (NO) attenuates hypoxia-induced endothelin (ET)-1 expression in cultured umbilical vein endothelial cells. We hypothesized that NO similarly attenuates hypoxia-induced increases in ET-1 expression in the lungs of intact animals and reasoned that potentially reduced ET-1 levels may contribute to the protective effects of NO against the development of pulmonary hypertension during chronic hypoxia. As expected, hypoxic exposure (24 h, 10% O2) increased rat lung ET-1 peptide and prepro-ET-1 mRNA levels. Contrary to our hypothesis, inhaled NO (iNO) did not attenuate hypoxia-induced increases in pulmonary ET-1 peptide or prepro-ET-1 mRNA levels. Because of this surprising finding, we also examined the effects of NO on hypoxia-induced increases in ET peptide levels in cultured cell experiments. Consistent with the results of iNO experiments, administration of the NO donor S-nitroso- N-acetyl-penicillamine to cultured bovine pulmonary endothelial cells did not attenuate increases in ET peptide levels resulting from hypoxic (24 h, 3% O2) exposure. In additional experiments, we examined the effects of NO on the activity of a cloned ET-1 promoter fragment containing a functional hypoxia inducible factor-1 binding site in reporter gene experiments. Whereas moderate hypoxia (24 h, 3% O2) had no effect on ET-1 promoter activity, activity was increased by severe hypoxic (24 h, 0.5% O2) exposure. ET-1 promoter activity after S-nitroso- N-acetyl-penicillamine administration during severe hypoxia was greater than that in normoxic controls, although activity was reduced compared with that in hypoxic controls. These findings suggest that hypoxia-induced pulmonary ET-1 expression is unaffected by NO.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hai-Xia Shi ◽  
Jiajun Yang ◽  
Tao Yang ◽  
Yong-Liang Xue ◽  
Jun Liu ◽  
...  

α-Asarone is the major therapeutical constituent ofAcorus tatarinowiiSchott. In this study, the potential protective effects ofα-asarone against endothelial cell injury induced by angiotensin II were investigatedin vitro. The EA.hy926 cell line derived from human umbilical vein endothelial cells was pretreated withα-asarone (10, 50, 100 µmol/L) for 1 h, followed by coincubation with Ang II (0.1 µmol/L) for 24 h. Intracellular nitric oxide (NO) and reactive oxygen species (ROS) were detected by fluorescent dyes, and phosphorylation of endothelial nitric oxide synthase (eNOS) atSer1177was determined by Western blotting.α-Asarone dose-dependently mitigated the Ang II-induced intracellular NO reduction (P<0.01versus model) and ROS production (P<0.01versus model). Furthermore, eNOS phosphorylation (Ser1177) by acetylcholine was significantly inhibited by Ang II, while pretreatment for 1 h withα-asarone partially prevented this effect (P<0.05versus model). Additionally, cell viability determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (105~114.5% versus control,P>0.05) was not affected after 24 h of incubation withα-asarone at 1–100 µmol/L. Therefore,α-asarone protects against Ang II-mediated damage of endothelial cells and may be developed to prevent injury to cardiovascular tissues.


Sign in / Sign up

Export Citation Format

Share Document