scholarly journals Muscle Satellite Cells: Exploring the Basic Biology to Rule Them

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Camila F. Almeida ◽  
Stephanie A. Fernandes ◽  
Antonio F. Ribeiro Junior ◽  
Oswaldo Keith Okamoto ◽  
Mariz Vainzof

Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

2019 ◽  
Vol 20 (1) ◽  
pp. 24-37 ◽  
Author(s):  
Laura Forcina ◽  
Carmen Miano ◽  
Laura Pelosi ◽  
Antonio Musarò

The peculiar ability of skeletal muscle tissue to operate adaptive changes during post-natal development and adulthood has been associated with the existence of adult somatic stem cells. Satellite cells, occupying an exclusive niche within the adult muscle tissue, are considered bona fide stem cells with both stem-like properties and myogenic activities. Indeed, satellite cells retain the capability to both maintain the quiescence in uninjured muscles and to be promptly activated in response to growth or regenerative signals, re-engaging the cell cycle. Activated cells can undergo myogenic differentiation or self-renewal moving back to the quiescent state. Satellite cells behavior and their fate decision are finely controlled by mechanisms involving both cell-autonomous and external stimuli. Alterations in these regulatory networks profoundly affect muscle homeostasis and the dynamic response to tissue damage, contributing to the decline of skeletal muscle that occurs under physio-pathologic conditions. Although the clear myogenic activity of satellite cells has been described and their pivotal role in muscle growth and regeneration has been reported, a comprehensive picture of inter-related mechanisms guiding muscle stem cell activity has still to be defined. Here, we reviewed the main regulatory networks determining satellite cell behavior. In particular, we focused on genetic and epigenetic mechanisms underlining satellite cell maintenance and commitment. Besides intrinsic regulations, we reported current evidences about the influence of environmental stimuli, derived from other cell populations within muscle tissue, on satellite cell biology.


2020 ◽  
Vol 98 (5) ◽  
Author(s):  
Madison L Gonzalez ◽  
Nicolas I Busse ◽  
Christy M Waits ◽  
Sally E Johnson

Abstract Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.


2001 ◽  
Vol 91 (2) ◽  
pp. 534-551 ◽  
Author(s):  
Thomas J. Hawke ◽  
Daniel J. Garry

Adult skeletal muscle has a remarkable ability to regenerate following myotrauma. Because adult myofibers are terminally differentiated, the regeneration of skeletal muscle is largely dependent on a small population of resident cells termed satellite cells. Although this population of cells was identified 40 years ago, little is known regarding the molecular phenotype or regulation of the satellite cell. The use of cell culture techniques and transgenic animal models has improved our understanding of this unique cell population; however, the capacity and potential of these cells remain ill-defined. This review will highlight the origin and unique markers of the satellite cell population, the regulation by growth factors, and the response to physiological and pathological stimuli. We conclude by highlighting the potential therapeutic uses of satellite cells and identifying future research goals for the study of satellite cell biology.


1991 ◽  
Vol 260 (2) ◽  
pp. C206-C212 ◽  
Author(s):  
P. K. Winchester ◽  
M. E. Davis ◽  
S. E. Alway ◽  
W. J. Gonyea

Satellite cell activity was examined in the stretch-enlarge anterior latissimus dorsi muscle (ALD) of the adult quail. Thirty-seven birds had a weight equal to 10% of their body mass attached to one wing while the contralateral wing served as an intra-animal control. At various time intervals after application of the wing weight (from 1 to 30 days), the birds were injected with tritiated thymidine and killed 1 h later. Stretched muscle length was greater by day 1 and mass by day 3 when compared with the contralateral muscle. Satellite cells actively synthesizing DNA were quantitated in fiber segments of the control and stretched ALD. A minimum of 1,500 muscle nuclei (satellite cell nuclei and myonuclei) were counted in each muscle. Labeling in stretched muscle was expressed by the percent labeled nuclei per total nuclei counted. Satellite cell labeling was initiated by day 1, peaked between days 3 and 7, and was not statistically different from control values at day 30. These results demonstrate that satellite cells are induced to enter the cell cycle in the stretch-enlarged ALD muscle from the adult quail, and the peak of proliferative activity is within the first week of stretch.


2020 ◽  
Vol 318 (6) ◽  
pp. C1178-C1188 ◽  
Author(s):  
Davis A. Englund ◽  
Kevin A. Murach ◽  
Cory M. Dungan ◽  
Vandré C. Figueiredo ◽  
Ivan J. Vechetti ◽  
...  

To date, studies that have aimed to investigate the role of satellite cells during adult skeletal muscle adaptation and hypertrophy have utilized a nontranslational stimulus and/or have been performed over a relatively short time frame. Although it has been shown that satellite cell depletion throughout adulthood does not drive skeletal muscle loss in sedentary mice, it remains unknown how satellite cells participate in skeletal muscle adaptation to long-term physical activity. The current study was designed to determine whether reduced satellite cell content throughout adulthood would influence the transcriptome-wide response to physical activity and diminish the adaptive response of skeletal muscle. We administered vehicle or tamoxifen to adult Pax7-diphtheria toxin A (DTA) mice to deplete satellite cells and assigned them to sedentary or wheel-running conditions for 13 mo. Satellite cell depletion throughout adulthood reduced balance and coordination, overall running volume, and the size of muscle proprioceptors (spindle fibers). Furthermore, satellite cell participation was necessary for optimal muscle fiber hypertrophy but not adaptations in fiber type distribution in response to lifelong physical activity. Transcriptome-wide analysis of the plantaris and soleus revealed that satellite cell function is muscle type specific; satellite cell-dependent myonuclear accretion was apparent in oxidative muscles, whereas initiation of G protein-coupled receptor (GPCR) signaling in the glycolytic plantaris may require satellite cells to induce optimal adaptations to long-term physical activity. These findings suggest that satellite cells play a role in preserving physical function during aging and influence muscle adaptation during sustained periods of physical activity.


2009 ◽  
Vol 21 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Shoji Tanaka ◽  
Takuya Miyata ◽  
Tyoichi Fujita ◽  
Ei Kawahara ◽  
Katsuhiko Tachino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document