scholarly journals An Efficient Node Localization Approach with RSSI for Randomly Deployed Wireless Sensor Networks

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Xihai Zhang ◽  
Junlong Fang ◽  
Fanfeng Meng

An efficient path planning approach in mobile beacon localization for the randomly deployed wireless sensor nodes is proposed in this paper. Firstly, in order to improve localization accuracy, the weighting function based on the distance between nodes is constructed. Moreover, an iterative multilateration algorithm is also presented to avoid decreasing the localization accuracy. Furthermore, a path planning algorithm based on grid scan which can traverse entirely in sensor field is described. At the same time, the start conditions of localization algorithm are also proposed to improve localization accuracy. To evaluate the proposed path planning algorithm, the localization results of beacon nodes randomly deployed in sensor field are also provided. The proposed approach can provide the deployment uniformly of virtual beacon nodes among the sensor fields and the lower computational complexity of path planning compared with method which utilizes only mobile beacons on the basis of a random movement. The performance evaluation shows that the proposed approach can reduce the beacon movement distance and the number of virtual mobile beacon nodes by comparison with other methods.

Author(s):  
Shrawan Kumar ◽  
D. K. Lobiyal

Obtaining precise location of sensor nodes at low energy consumption, less hardware requirement, and little computation is a challenging task. As one of the well-known range-free localization algorithm, DV-Hop can be simply implemented in wireless sensor networks, but it provides poor localization accuracy. Therefore, in this paper, the authors propose an enhanced DV-Hop localization algorithm that provides good localization accuracy without requiring additional hardware and communication messages in the network. The first two steps of proposed algorithm are similar to the respective steps of the DV-Hop algorithm. In the third step, they first separate error terms (correction factors) of the estimated distance between unknown node and anchor node. The authors then minimize these error terms by using linear programming to obtain better location accuracy. Furthermore, they enhance location accuracy of nodes by introducing weight matrix in the objective function of linear programming problem formulation. Simulation results show that the performance of our proposed algorithm is superior to DV-Hop algorithm and DV-Hop–based algorithms in all considered scenarios.


2014 ◽  
Vol 14 (5) ◽  
pp. 98-107 ◽  
Author(s):  
Jiang Xu ◽  
Huanyan Qian ◽  
Huan Dai ◽  
Jianxin Zhu

Abstract In this paper a new wireless sensor network localization algorithm, based on a mobile beacon and TSVM (Transductive Support Vector Machines) is proposed, which is referred to as MTSVM. The new algorithm takes advantage of a mobile beacon to generate virtual beacon nodes and then utilizes the beacon vector produced by the communication between the nodes to transform the problem of localization into one of classification. TSVM helps to minimize the error of classification of unknown fixed nodes (unlabeled samples). An auxiliary mobile beacon is designed to save the large volumes of expensive sensor nodes with GPS devices. As shown by the simulation test, the algorithm achieves good localization performance.


2012 ◽  
Vol 562-564 ◽  
pp. 1234-1239
Author(s):  
Ming Xia ◽  
Qing Zhang Chen ◽  
Yan Jin

The beacon drifting problem occurs when the beacon nodes move accidentally after deployment. In this occasion, the localization results of sensor nodes in the network will be greatly affected and become inaccurate. In this paper, we present a localization algorithm in wireless sensor networks in beacon drifting scenarios. The algorithm first uses a probability density model to calculate the location reliability of each node, and in localization it will dynamically choose nodes with highest location reliabilities as beacon nodes to improve localization accuracy in beacon drifting scenarios. Simulation results show that the proposed algorithm achieves its design goals.


Author(s):  
Soumya J. Bhat ◽  
K. V. Santhosh

AbstractInternet of Things (IoT) has changed the way people live by transforming everything into smart systems. Wireless Sensor Network (WSN) forms an important part of IoT. This is a network of sensor nodes that is used in a vast range of applications. WSN is formed by the random deployment of sensor nodes in various fields of interest. The practical fields of deployment can be 2D or 3D, isotropic or anisotropic depending on the application. The localization algorithms must provide accurate localization irrespective of the type of field. In this paper, we have reported a localization algorithm called Range Reduction Based Localization (RRBL). This algorithm utilizes the properties of hop-based and centroid methods to improve the localization accuracy in various types of fields. In this algorithm, the location unknown nodes identify the close-by neighboring nodes within a predefined threshold and localize themselves by identifying and reducing the probable range of existence from these neighboring nodes. The nodes which do not have enough neighbors are localized using the least squares method. The algorithm is tested in various irregular and heterogeneous conditions. The results are compared with a few state-of-the-art hop-based and centroid-based localization techniques. RRBL has shown an improvement in localization accuracy of 28% at 10% reference node ratio and 26% at 20% reference node ratio when compared with other localization algorithms.


2017 ◽  
Vol 13 (09) ◽  
pp. 69 ◽  
Author(s):  
Lianjun Yi ◽  
Miaochao Chen

<p>Wireless sensor networks (WSN), as a new method of information collection and processing, has a wide range of applications. Since the acquired data must be bound with the location information of sensor nodes, the sensor localization is one of the supporting technologies of wireless sensor networks. However, the common localization algorithms, such as APIT algorithm and DV-Hop algorithm, have the following problems: 1) the localization accuracy of beacon nodes is not high; 2) low coverage rate in sparse environment. In this paper, an enhanced hybrid 3D localization algorithm is designed with combining the advantages of APIT algorithm and DV-Hop algorithm. The proposed hybrid algorithm can improve the localization accuracy of the beacon nodes in dense environments by reducing the triangles in the triangle interior point test (PIT) and selecting good triangles. In addition, the algorithm can combine the advantages of APIT algorithm and DV-Hop algorithm localization algorithm to calculate the unknown node coordinates, and also improve the location coverage of the beacon nodes in sparse environment. Simulation results show that the proposed hybrid algorithm can effectively improve the localization accuracy of beacon nodes in the dense environment and the location coverage of beacon nodes in sparse environment.</p>


2014 ◽  
Vol 543-547 ◽  
pp. 3256-3259 ◽  
Author(s):  
Da Peng Man ◽  
Guo Dong Qin ◽  
Wu Yang ◽  
Wei Wang ◽  
Shi Chang Xuan

Node Localization technology is one of key technologies in wireless sensor network. DV-Hop localization algorithm is a kind of range-free algorithm. In this paper, an improved DV-Hop algorithm aiming to enhance localization accuracy is proposed. To enhance localization accuracy, average per-hop distance is replaced by corrected value of global average per-hop distance and global average per-hop error. When calculating hop distance, unknown nodes use corresponding average per-hop distance expression according to different hop value. Comparison with DV-Hop algorithm, simulation results show that the improved DV-Hop algorithm can reduce the localization error and enhance the accuracy of sensor nodes localization more effectively.


Sign in / Sign up

Export Citation Format

Share Document