Improved DV-Hop Algorithm for Enhancing Localization Accuracy in WSN

2014 ◽  
Vol 543-547 ◽  
pp. 3256-3259 ◽  
Author(s):  
Da Peng Man ◽  
Guo Dong Qin ◽  
Wu Yang ◽  
Wei Wang ◽  
Shi Chang Xuan

Node Localization technology is one of key technologies in wireless sensor network. DV-Hop localization algorithm is a kind of range-free algorithm. In this paper, an improved DV-Hop algorithm aiming to enhance localization accuracy is proposed. To enhance localization accuracy, average per-hop distance is replaced by corrected value of global average per-hop distance and global average per-hop error. When calculating hop distance, unknown nodes use corresponding average per-hop distance expression according to different hop value. Comparison with DV-Hop algorithm, simulation results show that the improved DV-Hop algorithm can reduce the localization error and enhance the accuracy of sensor nodes localization more effectively.

2013 ◽  
Vol 684 ◽  
pp. 390-393 ◽  
Author(s):  
Lin Chen ◽  
Zhi Yi Fang ◽  
Wei Lv ◽  
Zhuang Liu

Localization technology is one of the key technologies in Wireless Sensor Network (WSN). The Centroid algorithm, DV-HOP algorithm, APIT algorithm and Amorphous are the classic algorithms which are based on Range-free localization algorithm. This paper is improved on the basis of the DV-HOP and Weighted DV-HOP node localization algorithm, proposed an improved DV-HOP and weighted DV-HOP of WSN localization algorithm based on Simulation Curve Fitting (SCF). The SCF algorithm makes the process more refined during selecting the beacon node and the selected beacon node can be closer to the accurate position.


2013 ◽  
Vol 475-476 ◽  
pp. 579-582 ◽  
Author(s):  
Dong Yao Zou ◽  
Teng Fei Han ◽  
Dao Li Zheng ◽  
He Lv

The node localization is one of the key technologies in wireless sensor networks. To the accurate positioning of the nodes as the premise and foundation, this paper presents a centroid localization algorithm based on Cellular network. First, the anchor nodes are distributed in a regular hexagonal cellular network. Unknown nodes collect the RSSI of the unknown nodes nearby, then select the anchor nodes whose RSSI is above the threshold. Finally, the average of these anchor nodes coordinates is the positioning results. MATLAB simulation results show that localization algorithm is simple and effective, it applies to the need for hardware is relatively low.


2012 ◽  
Vol 562-564 ◽  
pp. 1234-1239
Author(s):  
Ming Xia ◽  
Qing Zhang Chen ◽  
Yan Jin

The beacon drifting problem occurs when the beacon nodes move accidentally after deployment. In this occasion, the localization results of sensor nodes in the network will be greatly affected and become inaccurate. In this paper, we present a localization algorithm in wireless sensor networks in beacon drifting scenarios. The algorithm first uses a probability density model to calculate the location reliability of each node, and in localization it will dynamically choose nodes with highest location reliabilities as beacon nodes to improve localization accuracy in beacon drifting scenarios. Simulation results show that the proposed algorithm achieves its design goals.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4152
Author(s):  
Sana Messous ◽  
Hend Liouane ◽  
Omar Cheikhrouhou ◽  
Habib Hamam

As localization represents the main backbone of several wireless sensor networks applications, several localization algorithms have been proposed in the literature. There is a growing interest in the multi-hop localization algorithms as they permit the localization of sensor nodes even if they are several hops away from anchor nodes. One of the most famous localization algorithms is the Distance Vector Hop (DV-Hop). Aiming to minimize the large localization error in the original DV-Hop algorithm, we propose an improved DV-Hop algorithm in this paper. The distance between unknown nodes and anchors is estimated using the received signal strength indication (RSSI) and the polynomial approximation. Moreover, the proposed algorithm uses a recursive computation of the localization process to improve the accuracy of position estimation. Experimental results show that the proposed localization technique minimizes the localization error and improves the localization accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wenxiu He ◽  
Fangfang Lu ◽  
Jingjing Chen ◽  
Yi Ruan ◽  
Tingjuan Lu ◽  
...  

Wireless sensors localization is still the main problem concerning wireless sensor networks (WSN). Unfortunately, range-free node localization of WSN results in a fatal weakness–, low accuracy. In this paper, we introduce kernel regression to node localization of anisotropic WSN, which transfers the problem of localization to the problem of kernel regression. Radial basis kernel-based G-LSVR and polynomial-kernel-based P-LSVR proposed are compared with classical DV-Hop in both isotropic WSN and anisotropic WSN under different proportion beacons, network scales, and disturbances of communication range. G-LSVR presents the best localization accuracy and stability from the simulation results.


2013 ◽  
Vol 712-715 ◽  
pp. 1847-1850
Author(s):  
Jun Gang Zheng ◽  
Cheng Dong Wu ◽  
Zhong Tang Chen

There exist some mobile node localization algoriths in wireless sensor netwok,which require high computation and specialized hardware and high node large density of beacon nodes.The Monte Carlo localization method has been studied and an improved Monte Carlo node localization has been proposed. Predicting the trajectory of the node by interpolation and combing sampling box to sampling. The method can improve the efficiency of sampling and accuracy. The simulation results show that the method has achieved good localization accuracy.


2012 ◽  
Vol 433-440 ◽  
pp. 4009-4013
Author(s):  
Jun Gang Zheng ◽  
Cheng Dong Wu ◽  
Hao Chu ◽  
Yang Xu

Node localization is one of the key technologies in wireless sensor networks,DV-Hop algorithm is wildly usded .The main DV-Hop localization error is the distance between unknown nodes ande anchor nodes.In this paper, The distance geometry constrain in two-dimensional space has been applied to reduce the error of measurement ,which is the distance between unknown nodes and anchor nodes. Simulation results show that this localization algorithm is effective ,which improves the positioning accuracy.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


In wireless sensor networks, localization is a way to track the exact location of sensor nodes. Occasionally node localization may not be accurate due to the absence or limitation of anchor nodes. To reduce the mean localization error, soft computing techniques such as BAT and bacterial foraging driven bat algorithm (BDBA) are utilized in literature. For better localization with reduced error, in this paper, firefly driven bat algorithm (FDBA) is proposed, which combines the heuristic of firefly and BAT algorithms. Our proposed FDBA algorithm provides better localization in terms of error of 60% and 40 % less error as compared to BAT and BDBA algorithm, respectively.


2021 ◽  
Author(s):  
Lismer Andres Caceres Najarro ◽  
Iickho Song ◽  
Kiseon Kim

<p> </p><p>With the advances in new technological trends and the reduction in prices of sensor nodes, wireless sensor networks</p> <p>(WSNs) and their applications are proliferating in several areas of our society such as healthcare, industry, farming, and housing. Accordingly, in recent years attention on localization has increased significantly since it is one of the main facets in any WSN. In a nutshell, localization is the process in which the position of any sensor node is retrieved by exploiting measurements from and between sensor nodes. Several techniques of localization have been proposed in the literature with different localization accuracy, complexity, and hence different applicability. The localization accuracy is limited by fundamental limitations, theoretical and practical, that restrict the localization accuracy regardless of the technique employed in the localization process. In this paper, we pay special attention to such fundamental limitations from the theoretical and practical points of view and provide a comprehensive review of the state-of-the-art solutions that deal with such limitations. Additionally, discussion on the theoretical and practical limitations together with their recent solutions, remaining challenges, and perspectives are presented.</p> <p><br></p>


Sign in / Sign up

Export Citation Format

Share Document