scholarly journals Three-Dimensional Assessment of Volumetric Changes in Sinuses Augmented with Two Different Bone Substitutes

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
B. Alper Gultekin ◽  
Oguz Borahan ◽  
Ali Sirali ◽  
Z. Cuneyt Karabuda ◽  
Eitan Mijiritsky

Introduction. The bone volume of the posterior maxilla may not be appropriate for implant placement, due to factors such as pneumatized maxillary sinus. The purpose of this study was to evaluate the percentage of graft volume reduction following sinus floor elevation (SFE), with either slow resorbable bone substitute only or a composite of slow and fast resorbable bone substitutes, using cone beam computed tomography (CBCT).Materials and Methods. In this retrospective study, CBCT scans of SFE procedures were evaluated to determine the volume of grafted sinus with either deproteinized bovine bone (DBB) or a 2 : 1 mixture of biphasic calcium sulfate (CS) and DBB, as a composite. The volumetric changes of sinus augmentations were measured 2 weeks (V-I) and 6 months (V-II) after operation.Results. Thirty-three patients were included in this study. The average percentage volume reduction was9.39±3.01% and17.65±4.15% for DBB and composite grafts, respectively. A significant graft volume reduction was observed between V-I and V-II for both groups (p<0.01). The DBB group exhibited significantly less volume reduction than the composite group (p<0.01).Conclusions. Augmented sinus volume may change before implant placement. DBB offers greater volume stability during healing than composite grafts.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Horia Mihail Barbu ◽  
Claudia Florina Andreescu ◽  
Monica Raluca Comaneanu ◽  
Daniel Referendaru ◽  
Eitan Mijiritsky

Nowadays it is possible to perform an optimal implant placement and to achieve a good long-term prognosis for an implant-borne prosthesis in the grafted posterior maxilla. This study evaluates the efficiency of one-stage piezosurgery by using as graft material a combination of particulate bovine bone substitutes with platelet-rich fibrin to achieve sinus lift. We included in this study 14 cases of one-stage sinus lift surgeries during which we placed 30 standard implants. The mean vertical bone height gain was 10.12 mm six months after surgery, and the mean postoperative follow-up time was 43.79 months. There were no major complications during or after surgery, and all implants are in use. Therefore, it can be concluded that one-stage sinus piezosurgery using particulate bovine bone substitutes and platelet-rich fibrin can be applied as a predictable and effective technique in the treatment of the posterior edentulous maxilla ensuring 4-5 mm vertical bone height.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Susanna Annibali ◽  
Giovanna Iezzi ◽  
Gian Luca Sfasciotti ◽  
Maria Paola Cristalli ◽  
Iole Vozza ◽  
...  

Objective. The aim of this investigation was to examine the bone regenerative potential of newly biphasic calcium phosphate ceramics (HA-β-TCP 30/70), by assessing histological and histomorphometric results of human specimens retrieved from sinuses augmented with HA-β-TCP 30/70, and comparing them to anorganic bovine bone (ABB), mineralized solvent-dehydrated bone allograft (MSDBA), and equine bone (EB), after a healing period of 6 months.Materials and Methods. Four consecutive patients with edentulous atrophic posterior maxilla were included in this report. A two-stage procedure was carried out for sinus augmentation with HA-β-TCP 30/70, ABB, MSDBA, and EB. After 6 months, specimens were retrieved at the time of implant placement and processed for histological and histomorphometric analyses.Results. At histological examination, all biomaterials were in close contact with the newly formed bone and showed the same pattern of bone formation; the grafted granules were surrounded by a bridge-like network of newly formed bone. A limited number of ABB particles were partially covered by connective tissue. The histomorphometric analysis revealed 30.2% newly formed bone for Ha-β-TCP 30/70, 20.1% for ABB, 16.4% for MSDBA, and 21.9% for EB.Conclusions. Within the limitations of the present investigation, these results support the successful use of HA-β-TCP 30/70 for sinus augmentation.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2159
Author(s):  
Giovanna Iezzi ◽  
Antonio Scarano ◽  
Luca Valbonetti ◽  
Serena Mazzoni ◽  
Michele Furlani ◽  
...  

Maxillary sinus augmentation is often necessary prior to implantology procedure, in particular in cases of atrophic posterior maxilla. In this context, bone substitute biomaterials made of biphasic calcium phosphates, produced by three-dimensional additive manufacturing were shown to be highly biocompatible with an efficient osteoconductivity, especially when combined with cell-based tissue engineering. Thus, in the present research, osteoinduction and osteoconduction properties of biphasic calcium-phosphate constructs made by direct rapid prototyping and engineered with ovine-derived amniotic epithelial cells or amniotic fluid cells were evaluated. More in details, this preclinical study was performed using adult sheep targeted to receive scaffold alone (CTR), oAFSMC, or oAEC engineered constructs. The grafted sinuses were explanted at 90 days and a cross-linked experimental approach based on Synchrotron Radiation microCT and histology analysis was performed on the complete set of samples. The study, performed taking into account the distance from native surrounding bone, demonstrated that no significant differences occurred in bone regeneration between oAEC-, oAFMSC-cultured, and Ctr samples and that there was a predominant action of the osteoconduction versus the stem cells osteo-induction. Indeed, it was proven that the newly formed bone amount and distribution decreased from the side of contact scaffold/native bone toward the bulk of the scaffold itself, with almost constant values of morphometric descriptors in volumes more than 1 mm from the border.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 946
Author(s):  
Katharina Kowalewicz ◽  
Elke Vorndran ◽  
Franziska Feichtner ◽  
Anja-Christina Waselau ◽  
Manuel Brueckner ◽  
...  

Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca0.75Mg2.25(PO4)2) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, Ø = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further.


2010 ◽  
Vol 89 (4) ◽  
pp. 411-416 ◽  
Author(s):  
M. Yamada ◽  
T. Ueno ◽  
H. Minamikawa ◽  
N. Sato ◽  
F. Iwasa ◽  
...  

Lack of cytocompatibility in bone substitutes impairs healing in surrounding bone. Adverse biological events around biomaterials may be associated with oxidative stress. We hypothesized that a clinically used inorganic bone substitute is cytotoxic to osteoblasts due to oxidative stress and that N-acetyl cysteine (NAC), an antioxidant amino acid derivative, would detoxify such material. Only 20% of rat calvaria osteoblasts were viable when cultured on commercial deproteinized bovine bone particles for 24 hr, whereas this percentage doubled on bone substitute containing NAC. Intracellular ROS levels markedly increased on and under bone substitutes, which were reduced by prior addition of NAC to materials. NAC restored suppressed alkaline phosphatase activity in the bone substitute. Proinflammatory cytokine levels from human osteoblasts on the bone substitute decreased by one-third or more with addition of NAC. NAC alleviated cytotoxicity of the bone substitute to osteoblastic viability and function, implying enhanced bone regeneration around NAC-treated inorganic biomaterials.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Antonio Scarano

Background. One of the most problematic regions for endosseous implants is the posterior maxilla, not only having poor bone density, but also lacking adequate vertical height as a result of sinus pneumatization. The purpose of the present study was a radiologic, histological, and histomorphometrical evaluation, in humans, of specimens retrieved from sinuses augmented with decellularized bovine compact particles, after a healing period of 6 months. Methods. Four patients, with atrophic resorbed maxillas, underwent a sinus lift augmentation with decellularized bovine compact bone from bovine femur. The size of the particles used was 0.25–1 mm. A total of four grafts and 5 biopsies were retrieved and processed to obtain thin ground sections with the Precise 1 Automated System. Results. The mean volume after graft elevation calculated for each of the 4 patients was 2106 mm3 in the immediate postoperative period (5–7 days), ranging from 1408.8 to 2946.4 mm3. In the late postoperative period (6 months) it was 2053 mm3, ranging from 1339.9 to 2808.9 mm3. Histomorphometry showed that newly formed bone was 36±1.6% and marrow spaces were 34±1.6%, while the residual graft material was 35±1.4%. Conclusion. In conclusion, based on the outcome of the present study, Re-Bone® can be used with success in sinus augmentation procedures and 6 months are considered an adequate time for maturation before implant placement.


2017 ◽  
Vol 23 ◽  
pp. 1394-1400 ◽  
Author(s):  
Eliza Dragan ◽  
Guillaume A. Odri ◽  
Gabriel Melian ◽  
Danisia Haba ◽  
Raphael Olszewski

Sign in / Sign up

Export Citation Format

Share Document