scholarly journals Stainless Steel Mesh Supported Carbon Nanofibers for Electrode in Bioelectrochemical System

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Jing Wang ◽  
Ming Li ◽  
Fangtai Liu ◽  
Shuiliang Chen

We proposed a self-connected carbon nanofiber design for electrode in microbial bioelectrochemical system. This design was realized by direct growth of carbon nanofibers (CNFs) onto stainless steel (SSM) via a chemical vapor deposition process without addition of any external catalysts. In the CNFs-SSM composite electrode, the SSM acted as the conductive network and ensured efficient substrate and proton transfer, and the CNFs layer served as highly porous habitats for thick biofilm propagation. The current generated by the CNFs-SSM was 200 times higher than the bare SSM under the same experimental conditions. This provided a simple and promising method for preparation of electrode material with high performance and low-cost in bioelectrochemical system.

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 545
Author(s):  
Yi Zhang ◽  
Wei Jiang ◽  
Dezhi Feng ◽  
Chenguang Wang ◽  
Yi Xu ◽  
...  

2D molybdenum disulfide (MoS2)-based thin film transistors are widely used in biosensing, and many efforts have been made to improve the detection limit and linear range. However, in addition to the complexity of device technology and biological modification, the compatibility of the physical device with biological solutions and device reusability have rarely been considered. Herein, we designed and synthesized an array of MoS2 by employing a simple-patterned chemical vapor deposition growth method and meanwhile exploited a one-step biomodification in a sensing pad based on DNA tetrahedron probes to form a bio-separated sensing part. This solves the signal interference, solution erosion, and instability of semiconductor-based biosensors after contacting biological solutions, and also allows physical devices to be reused. Furthermore, the gate-free detection structure that we first proposed for DNA (BRCA1) detection demonstrates ultrasensitive detection over a broad range of 1 fM to 1 μM with a good linear response of R2 = 0.98. Our findings provide a practical solution for high-performance, low-cost, biocompatible, reusable, and bio-separated biosensor platforms.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Minyu Bai ◽  
Zhuoman Wang ◽  
Jijie Zhao ◽  
Shuai Wen ◽  
Peiru Zhang ◽  
...  

Weak absorption remains a vital factor that limits the application of two-dimensional (2D) materials due to the atomic thickness of those materials. In this work, a direct chemical vapor deposition (CVD) process was applied to achieve 2D MoS2 encapsulation onto the silicon nanopillar array substrate (NPAS). Single-layer 2D MoS2 monocrystal sheets were obtained, and the percentage of the encapsulated surface of NPAS was up to 80%. The reflection and transmittance of incident light of our 2D MoS2-encapsulated silicon substrate within visible to shortwave infrared were significantly reduced compared with the counterpart planar silicon substrate, leading to effective light trapping in NPAS. The proposed method provides a method of conformal deposition upon NPAS that combines the advantages of both 2D MoS2 and its substrate. Furthermore, the method is feasible and low-cost, providing a promising process for high-performance optoelectronic device development.


RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15416-15421
Author(s):  
Wen Xin ◽  
Zhixuan Wei ◽  
Shiyu Yao ◽  
Nan Chen ◽  
Chunzhong Wang ◽  
...  

Co9S8@carbon nanofibers with boosted highly active electrode–electrolyte area, fast kinetics and controlled volume expansion show an excellent cycling and rate performance in potassium ion batteries.


2012 ◽  
Vol 1439 ◽  
pp. 139-144 ◽  
Author(s):  
Nima Mohseni Kiasari ◽  
Saeid Soltanian ◽  
Bobak Gholamkhass ◽  
Peyman Servati

ABSTRACTZinc oxide (ZnO) nanowires (NW) are grown on both silicon and sapphire substrates using conventional chemical vapor deposition (CVD) system. As-grown nanostructures are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) as well as energy dispersive spectroscopy (EDS) and the results confirm high-quality c-axis growth of single-crystalline zinc oxide nanowires. Nanowire are dispersed in solvent and then placed between micro-patterned gold electrodes fabricated on silicon wafers using low cost and scalable dielectrophoresis (DEP) process for fabrication of oxygen and humidity sensors. These sensors are characterized in a vacuum chamber connected to a semiconductor analyzer. Current-voltage characteristics of each device are systematically investigated under different hydrostatic pressure of various gaseous environments such as nitrogen, argon, dry and humid air. It is observed that the electrical conductivity of the nanowires is significantly dependent on the number of oxygen and water molecules adsorbed to the surface of the metal oxide nanowire. These results are critical for development of low cost metal oxide sensors for high performance ubiquitous environmental sensors of oxygen and humidity.


Author(s):  
Sterling Voss ◽  
Bret Mecham ◽  
Lucy Bowden ◽  
Jacquelyn Monroe ◽  
Anton E. Bowden ◽  
...  

Abstract Physically altering the micro-topography of a surface can dramatically affect its capacity to support or prevent biofilm growth. Growing carbon-infiltrated carbon nanotubes on biomedical materials is one such approach which has proven effective. Unfortunately, the high temperature and carbon-rich gas exposure required for this procedure has proven to have deleterious effects. This paper proposes a kinetic model to explain the rusting phenomenon observed on 316L stainless steel substrates which have undergone the chemical vapor deposition process to grow carbon-infiltrated carbon nanotubes. The model is derived from Fick’s Second Law, and predicts the growth of chromium carbide as a function of temperature and time. Chromium carbide formation is shown to be the mechanism of corrosion, as chromium atoms are leeched from the the matrix, preventing the formation of a passivating chromium oxide layer in place of problematic iron oxide (rust) formation. The model is validated using experimental methods, which involve immersion in bacteria culture, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX).


2020 ◽  
Vol 8 (15) ◽  
pp. 7297-7308 ◽  
Author(s):  
Khang Ngoc Dinh ◽  
Zengxia Pei ◽  
Ziwen Yuan ◽  
Van Chinh Hoang ◽  
Li Wei ◽  
...  

A dual-functional metal template achieves on-demand control of metal–N–C sites, porous structures, and surface wettability in a carbon nanofiber catalyst, enabling flexible zinc–air batteries with outstanding performance under various mechanical deformations.


2019 ◽  
Vol 7 (28) ◽  
pp. 16812-16820 ◽  
Author(s):  
Yongzheng Zhang ◽  
Guixin Xu ◽  
Qi Kang ◽  
Liang Zhan ◽  
Weiqiang Tang ◽  
...  

Nanostructured VS4 was in situ grown on defect-rich carbon nanofibers as a functional separator coating, which exerts the efficient entrapment and electrocatalysis of LiPS conversion.


Sign in / Sign up

Export Citation Format

Share Document