scholarly journals Tolerogenic Dendritic Cells Generated with Tofacitinib Ameliorate Experimental Autoimmune Encephalomyelitis through Modulation of Th17/Treg Balance

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yan Zhou ◽  
Xiao Leng ◽  
Shasha Luo ◽  
Zhiwei Su ◽  
Xingyan Luo ◽  
...  

It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS.

2020 ◽  
Author(s):  
Thaiphi Luu ◽  
Julie F. Cheung ◽  
Hanspeter Waldner

AbstractExperimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), is predominantly mediated by pro-inflammatory CD4+ T cell responses to CNS antigens, including myelin proteolipid protein (PLP). Dendritic cells (DCs) are considered critical for inducing T cell responses against infectious agents, but the importance of DCs in priming self-reactive CD4+ T cells in autoimmune disease such as MS has been unclear.To determine the requirement of DCs in PLP-specific CD4+ T cell responses and EAE, we genetically deleted CD11c+ DCs in PLP T cell receptor (TCR) transgenic SJL mice constitutively. DC deficiency did not impair the development, selection or the pathogenic function of PLP-specific CD4+ T cells in these mice, and resulted in accelerated spontaneous EAE compared to DC sufficient controls. In addition, using a genetic approach to ablate DCs conditionally in SJL mice, we show that CD11c+ DCs were dispensable for presenting exogenous or endogenous myelin antigen to PLP-specific T cells and for promoting pro-inflammatory T cell responses and severe EAE. Our findings demonstrate that constitutive or conditional ablation of CD11c+ DCs diminished self-tolerance to PLP autoantigen. They further show that in the absence of DCs, non-DCs can efficiently present CNS myelin antigens such as PLP to self-reactive T cells, resulting in accelerated onset of spontaneous or induced EAE.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Simone Wüst ◽  
Jens van den Brandt ◽  
Holger M. Reichardt ◽  
Fred Lühder

Glucocorticoids (GCs) represent the standard treatment for acute disease bouts in multiple sclerosis (MS) patients, for which methylprednisolone (MP) pulse therapy is the most frequently used protocol. Here, we compared the efficacy of therapeutic and preventive MP application inMOG35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57Bl/6 mice. When administered briefly after the onset of the disease, MP efficiently ameliorated EAE in a dose-dependent manner. Surprisingly, MP administration around the time of immunization was contraindicated as it even increased leukocyte infiltration into the CNS and worsened the disease symptoms. Our analyses suggest that in the latter case an incomplete depletion of peripheral T cells by MP triggers homeostatic proliferation, which presumably results in an enhanced priming of autoreactive T cells and causes an aggravated disease course. Thus, the timing and selection of a particular GC derivative require careful consideration in MS therapy.


2008 ◽  
Vol 205 (11) ◽  
pp. 2643-2655 ◽  
Author(s):  
Moran Meiron ◽  
Yaniv Zohar ◽  
Rachel Anunu ◽  
Gizi Wildbaum ◽  
Nathan Karin

Experimental autoimmune encephalomyelitis (EAE) is a T cell–mediated autoimmune disease of the central nervous system induced by antigen-specific effector Th17 and Th1 cells. We show that a key chemokine, CXCL12 (stromal cell–derived factor 1α), redirects the polarization of effector Th1 cells into CD4+CD25−Foxp3−interleukin (IL) 10high antigen-specific regulatory T cells in a CXCR4-dependent manner, and by doing so acts as a regulatory mediator restraining the autoimmune inflammatory process. In an attempt to explore the therapeutic implication of these findings, we have generated a CXCL12-immunoglobulin (Ig) fusion protein that, when administered during ongoing EAE, rapidly suppresses the disease in wild-type but not IL-10–deficient mice. Anti–IL-10 neutralizing antibodies could reverse this suppression. The beneficial effect included selection of antigen-specific T cells that were CD4+CD25−Foxp3−IL-10high, which could adoptively transfer disease resistance, and suppression of Th17 selection. However, in vitro functional analysis of these cells suggested that, even though CXCL12-Ig–induced tolerance is IL-10 dependent, IL-10–independent mechanisms may also contribute to their regulatory function. Collectively, our results not only demonstrate, for the first time, that a chemokine functions as a regulatory mediator, but also suggest a novel way for treating multiple sclerosis and possibly other inflammatory autoimmune diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250340
Author(s):  
Thaiphi Luu ◽  
Julie F. Cheung ◽  
Jennifer Baccon ◽  
Hanspeter Waldner

Experimental autoimmune encephalomyelitis (EAE) is an established animal model of multiple sclerosis (MS). Inflammatory CD4+ T cell responses directed against CNS antigens, including myelin proteolipid protein (PLP), are key mediators of EAE. Dendritic cells (DCs) are critical for the induction of T cell responses against infectious agents. However, the importance of DCs in priming self-reactive CD4+ T cells in autoimmune disease such as MS has been unclear. To determine the requirement of DCs in PLP-specific CD4+ T cell responses and EAE, we genetically deleted CD11c+ DCs in PLP T cell receptor (TCR) transgenic SJL mice constitutively. DC deficiency did not impair the development, selection or the pathogenic function of PLP-specific CD4+ T cells in these mice, and resulted in accelerated spontaneous EAE compared to DC sufficient controls. In addition, using a genetic approach to ablate DCs conditionally in SJL mice, we show that CD11c+ DCs were dispensable for presenting exogenous or endogenous myelin antigen to PLP-specific T cells and for promoting pro-inflammatory T cell responses and severe EAE. Our findings demonstrate that constitutive or conditional ablation of CD11c+ DCs diminished self-tolerance to PLP autoantigen. They further show that in the absence of DCs, non-DCs can efficiently present CNS myelin antigens such as PLP to self-reactive T cells, resulting in accelerated onset of spontaneous or induced EAE.


2003 ◽  
Vol 10 (4) ◽  
pp. 564-572 ◽  
Author(s):  
Diane L. Sewell ◽  
Emily K. Reinke ◽  
Dominic O. Co ◽  
Laura H. Hogan ◽  
Robert B. Fritz ◽  
...  

ABSTRACT Infectious agents have been proposed to influence susceptibility to autoimmune diseases such as multiple sclerosis. We induced a Th1-mediated central nervous system (CNS) autoimmune disease, experimental autoimmune encephalomyelitis (EAE) in mice with an ongoing infection with Mycobacterium bovis strain bacillus Calmette-Guérin (BCG) to study this possibility. C57BL/6 mice infected with live BCG for 6 weeks were immunized with myelin oligodendroglial glycoprotein peptide (MOG35-55) to induce EAE. The clinical severity of EAE was reduced in BCG-infected mice in a BCG dose-dependent manner. Inflammatory-cell infiltration and demyelination of the spinal cord were significantly lessened in BCG-infected animals compared with uninfected EAE controls. ELISPOT and gamma interferon intracellular cytokine analysis of the frequency of antigen-specific CD4+ T cells in the CNS and in BCG-induced granulomas and adoptive transfer of MOG35-55-specific green fluorescent protein-expressing cells into BCG-infected animals indicated that nervous tissue-specific (MOG35-55) CD4+ T cells accumulate in the BCG-induced granuloma sites. These data suggest a novel mechanism for infection-mediated modulation of autoimmunity. We demonstrate that redirected trafficking of activated CNS antigen-specific CD4+ T cells to local inflammatory sites induced by BCG infection modulates the initiation and progression of a Th1-mediated CNS autoimmune disease.


Sign in / Sign up

Export Citation Format

Share Document