scholarly journals Identification and Optimisation of Lipase-Catalysed Synthesis of Betulinic Acid Amide in a Solvent System

2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Nurul Atikah Binti Amin Yusof ◽  
Nursyamsyila Mat Hadzir ◽  
Siti Efliza Ashari

Betulinic acid amide was synthesized from the enzymatic reaction of betulinic acid and butylamine catalysed by Novozym 435. The effects of different reaction parameters, such as effect of reaction time, reaction temperature, amount of enzyme, and substrate molar ratio (betulinic acid : butylamine), were studied and conventionally optimised. Based on this study, the enzymatic synthesis of betulinic acid amide was found to be 64.6% at the optimum conditions of 24 h, 40°C, 100 mg enzyme, and 1 : 1 substrate molar ratio in 9 : 1 mixture of chloroform and hexane as solvent. The identification of final product was carried out using TLC, melting point, and FTIR and NMR showed the presence of betulinic acid amide.

2019 ◽  
Vol 19 (4) ◽  
pp. 849
Author(s):  
Nurul Atikah Amin Yusof ◽  
Nursyamsyila Mat Hadzir ◽  
Siti Efliza Ashari ◽  
Nor Suhaila Mohamad Hanapi ◽  
Rossuriati Dol Hamid

Optimization of the lipase catalyzed enzymatic synthesis of betulinic acid amide in the presence of immobilized lipase, Novozym 435 from Candida antartica as a biocatalyst was studied. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of the synthesis parameters, such as reaction time (20–36 h), reaction temperature (37–45 °C), substrate molar ratio of betulinic acid to butylamine (1:1–1:3), and enzyme amounts (80–120 mg) on the percentage yield of betulinic acid amide by direct amidation reaction. The optimum conditions for synthesis were: reaction time of 28 h 33 min, reaction temperature of 42.92 °C, substrate molar ratio of 1:2.21, and enzyme amount of 97.77 mg. The percentage yield of actual experimental values obtained 65.09% which compared well with the maximum predicted value of 67.23%. The obtained amide was characterized by GC, GCMS and 13C NMR. Betulinic acid amide (BAA) showed a better cytotoxicity compared to betulinic acid as the concentration inhibited 50% of the cell growth (IC50) against MDA-MB-231 cell line (IC50 < 30 µg/mL).


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1181
Author(s):  
Magdalena Rychlicka ◽  
Anna Gliszczyńska

The p-methoxycinnamic acid (p-MCA) is one of the most popular phenylpropanoids, the beneficial impact of which on the human health is well documented in the literature. This compound has shown many valuable activities including anticancer, antidiabetic, and neuro- and hepatoprotective. However, its practical application is limited by its low bioavailability resulting from rapid metabolism in the human body. The latest strategy, aimed at overcoming these limitations, is based on the production of more stability in systemic circulation bioconjugates with phospholipids. Therefore, the aim of this research was to develop the biotechnological method for the synthesis of phospholipid derivatives of p-methoxycinnamic acid, which can play a role of new nutraceuticals. We developed and optimized enzymatic interesterification of phosphatidylcholine (PC) with ethyl p-methoxycinnamate (Ep-MCA). Novozym 435 and a binary solvent system of toluene/chloroform 9:1 (v/v) were found to be the effective biocatalyst and reaction medium for the synthesis of structured p-MCA phospholipids, respectively. The effects of the other reaction parameters, such as substrate molar ratio, enzyme dosage, and reaction time, on the degree of incorporation of p-MCA into PC were evaluated by use of an experimental factorial design method. The results showed that substrate molar ratio and biocatalyst load have significant effects on the synthesis of p-methoxycinnamoylated phospholipids. The optimum conditions were: Reaction time of three days, 30% (w/w) of Novozym 435, and 1/10 substrate molar ratio PC/Ep-MCA. Under these parameters, p-methoxycinnamoylated lysophosphatidylcholine (p-MCA-LPC) and p-methoxycinnamoylated phosphatidylcholine (p-MCA-PC) were obtained in isolated yields of 32% and 3% (w/w), respectively.


2013 ◽  
Vol 291-294 ◽  
pp. 284-289
Author(s):  
Xue Lin Zhang ◽  
Jun Jun Li ◽  
Xiang Hua Tang ◽  
Zhen Rong Xie ◽  
Zun Xi Huang

This study employed statistically based on experimental designs to optimize transesterification conditions for biodiesel production from waste oil via lipase-catalyzed in homoeothermy. Optimization of different reaction parameters were done by using response surface methodology. Results indicated optimum conditions including: alcohol to oil molar ratio 3:1, lipase concentration 58.38 U each gram of oil, water and n-hexane content were 24.59% and 13.28% respectively, reaction temperature at 20 °C , and reaction time for 24 h. Under these optimal conditions, 98.24% yield of biodiesel was obtained. This study will probably contribute to the development of continuous enzymatic processes, and maybe a suitable method for industrial production of biodiesel.


2013 ◽  
Vol 634-638 ◽  
pp. 647-650
Author(s):  
Jian Zhong Jin ◽  
Na Bo Sun

The silicotungstic acid catalyst supported on bentonite was employed in the esterification of menthol and lactic acid. The main reaction parameters were silicotungstic acid loading on bentonite, the amounts of catalyst, molar ratio of reactants, reaction temperature and reaction time. The optimum conditions were determined as follows : silicotungstic acid loading on bentonite 50 wt %, catalyst 1.25 g , mole ratio of menthol to lactic acid 1:1.1, reaction temperature 130 °C and reaction time 3 h . The esterification yield of menthyl lactiate was about 83.97 %. The catalyst could be used repeatedly for many times without distinct loss in activity.


2015 ◽  
Vol 49 (2) ◽  
pp. 85-88
Author(s):  
Dipti Saha ◽  
Md Ashaduzzaman ◽  
Mithun Sarker ◽  
Partha Saha ◽  
Tahmina Siddiqui

The reaction of phenol with undecan-1-ol and dodecan-1-ol respectively was investigated in the presence of p-toluenesulphonic acid to get the corresponding alkylated phenols. The effects of the variation of different reaction parameters viz. temperature, molar ratio of phenol to undecan-1-ol and dodecan-1-ol respectively, amount of p-toluenesulphonic acid, addition of time and stirring of time on the reaction were studied and optimum conditions of the reaction were determined. DOI: http://dx.doi.org/10.3329/bjsir.v49i2.22001 Bangladesh J. Sci. Ind. Res. 49(2), 85-88, 2014


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1223 ◽  
Author(s):  
Lucia Tamborini ◽  
Clelia Previtali ◽  
Francesca Annunziata ◽  
Teodora Bavaro ◽  
Marco Terreni ◽  
...  

The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl–agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides.


2011 ◽  
Vol 11 (3) ◽  
pp. 223-228 ◽  
Author(s):  
Zuhrina Masyithah ◽  
Seri Bima Sembiring ◽  
Zul Alfian ◽  
Tjahjono Herawan

The optimization of enzymatic synthesis for lauroyl-N-methyl glucamide surfactants is studied. The fraction of palm kernel oil namely lauric acid (AL) was amidificationed with N-methyl glucamine (MGL) to produce lauroyl-N-methyl glucamide. Study was carried out by using immobilized lipase from Candida antarctica (Novozyme 435®), and tert-amylalcohol as a solvent. Response Surface Methodology (RSM) based on a five level, three variable design was employed, firstly, for studying the interactive effect of various parameters on the reaction, and secondly, for the optimization. The reaction parameters observed were Novozyme concentration, substrate molar ratio, and temperature. Simultaneously increasing Novozyme concentration, substrate molar ratio, and temperature improves the reaction yield and the effect of temperature is noted more significant. The expected optimum condition was at molar ratio MGL:AL 1:1, the Novozyme concentration of 8% and the reaction temperature of 50-55 °C. The reactions at the optimum condition produce the convertion of lauric acid of 64.5% and yield of 96.5%. With the optimization procedure the higher alkyl glucamide yield was achieved.


2013 ◽  
Vol 781-784 ◽  
pp. 272-275
Author(s):  
Zhen Ming Zhang ◽  
Run Lai Li ◽  
Shuan Li ◽  
Pei Liu ◽  
Kai Kai Song

Polyethylene glycol-400 was used as phase transfer catalyst in reaction of dichloropyridine and sodium thiomethoxide to form 2-methylthiopyridine with a yield of 97.8%. Then 2-methylthiopyridine and sodium hypochlorite were added respectively to oxidize and bromize it to synthesis 2-Pyridyl tribromomethyl sulfone, with the purity of 99.6% and yield of 93.3%. Mass ratio of dichloropyridine versus polyethylene glycol-400 is 1:0.18, and molar ratio of dichloropyridine versus sodium thiomethoxide is 1:1.2. The optimum conditions to prepare sodium hypochlorite are a temperature at-5 to 0 °C, a molar ratio of bromine versus sodium hydroxide being 1:4. Proved optimum conditions to synthesis 2-pyridyl tribromomethyl sulfone are a temperature at (80±1)°C, reaction time for 5 hours and the molar ratio of 2-methylthiopyridine versus bromine being 1:6.58. Probable mechanism of synthetizing 2-methylthiopyridine was speculated, properties with structure of resultant substances were characterized by melting point apparatus, IR spectra and magnetic resonance spectrum.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1802 ◽  
Author(s):  
Yesol Baek ◽  
Jonghwa Lee ◽  
Jemin Son ◽  
Taek Lee ◽  
Abdus Sobhan ◽  
...  

Octyl formate is an important substance used in the perfume industry in products such as cosmetics, perfumes, and flavoring. Octyl formate is mostly produced by chemical catalysts. However, using enzymes as catalysts has gathered increasing interest due to their environment-friendly proprieties. In the present study, we aimed to identify the optimal conditions for the synthesis of octyl formate through immobilized enzyme-mediated esterification. We investigated the effects of enzymatic reaction parameters including the type of immobilized enzyme, enzyme concentration, molar ratio of reactants, reaction temperature, and type of solvent using the optimization method of one factor at a time (OFAT). The maximum conversion achieved was 96.51% with Novozym 435 (15 g/L), a 1:7 formic acid to octanol ratio, a reaction temperature of 40 °C, and with 1,2-dichloroethane as solvent. Moreover, we demonstrated that the Novozym 435 can be reused under the optimal conditions without affecting the octyl formate yield, which could help reduce the economic burden associated with enzymatic synthesis.


2015 ◽  
Vol 754-755 ◽  
pp. 902-906
Author(s):  
Salina Mat Radzi ◽  
Nurul Jannah Abd Rahman ◽  
Hanina Mohd Noor ◽  
Norlelawati Ariffin

A novel approach of dual lipases system was successfully carried out in improving the synthesis of ferulate esters between ethyl ferulate and olive oil. Combination of Novozym 435 and Lipozyme RMIM were used as biocatalyst to improve the reaction performance. Different reaction parameters (ratio of lipases, reaction time, lipase dosage, substrate molar ratio and reaction temperature) were analyzed systematically. A high conversion of ferulate esters (85%) was obtained after 12 hrs of reaction time at optimal conditions of 1:9 w/w (Novozym 435/Lipozyme RMIM), 80 mg of lipase and 1:4 ethyl ferulate:olive oil at 60 oC.


Sign in / Sign up

Export Citation Format

Share Document