scholarly journals Hybrid Vibration Control under Broadband Excitation and Variable Temperature Using Viscoelastic Neutralizer and Adaptive Feedforward Approach

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
João C. O. Marra ◽  
Eduardo M. O. Lopes ◽  
José João de Espíndola ◽  
Walter Antônio Gontijo

Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive) vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber), the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm) working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive) has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.

2016 ◽  
Vol 23 (20) ◽  
pp. 3414-3430 ◽  
Author(s):  
Man H Tso ◽  
Jing Yuan ◽  
Wai O Wong

A new hybrid vibration absorber, with detached passive and active parts, is designed, analyzed and tested. This is an alternative approach in case the traditional bundled hybrid vibration absorber with collocated active and passive control elements cannot be applied. In fixed-free structures like buildings and towers, a passive dynamic vibration absorber is very popular for vibration control at or near the free ends. Active control may be introduced to improve performance, but space or weight may be limited in some applications. It may not be practical to attach an actuator near the passive part. The new approach provides more flexibility to retrofit a passive dynamic vibration absorber into a high performance hybrid vibration absorber by installing the actuator at a more suitable location than collocated with the passive part. The proposed hybrid vibration absorber is based on the pole-placement control strategy. Its controller is able to deal with a possible nonminimum-phase secondary path caused by noncollocated actuator sensors. This feature does not exist in a bundled hybrid vibration absorber with collocated actuator sensors. The performance of the new hybrid vibration absorber is analyzed in this study. Experimental and simulation results are used to verify the theoretical results and demonstrate the excellent performance of the new hybrid vibration absorber for vibration control at multiple points. A bundled hybrid vibration absorber with collocated passive and active elements is compared with the proposed hybrid vibration absorber with detached control elements, using experimental and simulation results. It was found that the vibration attenuation performance of the proposed hybrid vibration absorber can be better than the traditional bundled hybrid vibration absorber. The optimal actuator location, which is not necessarily the coupling point of the passive resonator, can be selected numerically by a proposed procedure. One could miss a better solution for vibration control if he/she only uses the bundled hybrid vibration absorber without considering the detached hybrid vibration absorber as a possible alternative.


2021 ◽  
Author(s):  
Yu SUN ◽  
Jinsong Zhou ◽  
Dao Gong ◽  
Yuanjin Ji

Abstract To absorb the vibration of the carbody of the high-speed train in multiple degrees of freedom, a multi-degree of freedom dynamic vibration absorber (MDOF DVA) is proposed. Installed under the carbody, the natural vibration frequency of the MDOF DVA from each DOF can be designed as a DVA for each single degree of freedom of the carbody. Hence, a 12-DOF model including the main vibration system and a MDOF DVA is established, and the principle of Multi-DOF dynamic vibration absorption is analyzed by combining the design method of single DVA and genetic algorithm. Based on a high-speed train dynamics model including an under-carbody MDOF DVA, the vibration control effect on each DOF of the MDOF DVA is analyzed by the virtual excitation method. Moreover, a high static and low dynamic stiffness (HSLDS) mount is proposed based on a cam–roller–spring mechanism for the installation of the MDOF DVA due to the requirement of the low vertical dynamic stiffness. From the dynamic simulation of a non-linear model in time-domain, the vibration control performance of the MDOF DVA installed with nonlinear HSLDS mount on the carbody is analyzed. The results show that the MDOF DVA can absorb the vibration of the carbody in multiple degrees of freedom effectively, and improve the running ride quality of the vehicle.


2021 ◽  
Vol 21 (1) ◽  
pp. 15-25
Author(s):  
Rusul Saad Ahmed ◽  
Qasim Abaas Atiyah ◽  
Imad Abdlhussein Abdulsahib

Smart materials have a growing technological importance due to their unique thermomechanical characteristics. Shape memory alloys belong to this class of materials being easy to manufacture, relatively lightweight, and able to produce high forces or displacements with low power consumption. These aspects could be exploited in different applications including vibration control. A dynamic vibration absorber (DVA) can be used as an effective vibration control device. It is essentially a secondary mass, attached to an original system via a spring and damper. The natural frequency of the DVA is tuned such that it coincides with the frequency of unwanted vibration in the original system. This work aims to develop a dynamic vibration absorber with the help of shape memory alloy (SMA) springs in order to attenuate the vibration for a range of excitation frequencies. The experimental apparatus consisted of low-friction cars free to move in a rail. A shaker that provides harmonic forcing excites the system. Special attention is dedicated to the analysis of vibration reduction that can be achieved by considering different approaches exploiting temperature variations promoted either by electric current changes or by vibration absorber techniques. The results established that adaptability due to temperature variations is defined by modulus of stiffness


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Shaoyi Zhou ◽  
Claire Jean-Mistral ◽  
Simon Chesne

Abstract This paper addresses the optimal design of a novel nontraditional inerter-based dynamic vibration absorber (NTIDVA) installed on an undamped primary system of single degree-of-freedom under harmonic and transient excitations. Our NTIDVA is based on the traditional dynamic vibration absorber (TDVA) with the damper replaced by a grounded inerter-based mechanical network. Closed-form expressions of optimal parameters of NTIDVA are derived according to an extended version of fixed point theory developed in the literature and the stability maximization criterion. The transient response of the primary system is optimized when the coupled system becomes defective, namely having three pairs of coalesced conjugate poles, the proof of which is also spelt out in this paper. Moreover, the analogous relationship between NTIDVA and electromagnetic dynamic vibration absorber is highlighted, facilitating the practical implementation of the proposed absorber. Finally, numerical studies suggest that compared with TDVA, NTIDVA can decrease the peak vibration amplitude of the primary system and enlarge the frequency bandwidth of vibration suppression when optimized by the extended fixed point technique, while the stability maximization criterion shows an improved transient response in terms of larger modal damping ratio and accelerated attenuation rate.


Sign in / Sign up

Export Citation Format

Share Document