scholarly journals Preparation of Graphene/TiO2Composite Nanomaterials and Its Photocatalytic Performance for the Degradation of 2,4-Dichlorophenoxyacetic Acid

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Donggen Huang ◽  
Tianzi Yang ◽  
Zhuanghong Mo ◽  
Qin Guo ◽  
Shuiqing Quan ◽  
...  

The graphene (GR) was prepared by an improved electrochemical stripping method using a high-purity graphite rod as raw material and high temperature heat reduction in hydrogen atmosphere, and the graphene/TiO2(GR/TiO2) composite nanomaterials were manufactured by the method of sol-gel and high temperature crystallization in hydrogen atmosphere using butyl titanate and electrolysis graphene as precursors. The physical and chemical properties of the composites had been characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer (UV-Vis), scanning electron microscopy (SEM), Transmission Electron Microscope (TEM),  and specific surface area (SSA) by BET method. The photocatalytic properties of GR/TiO2composites nanomaterials in anoxic water were studied by using 2,4-dichlorophenoxyacetic acid (2,4-D) as probe. The results showed that graphite was well intercalated and peeled by a facile electrolysis method in different electric field environment; a well dispersed and rings structure of graphene was prepared by coupling ultrasound-assisted changing voltage electrochemical stripping technology. The as-prepared GR/TiO2composites had good performance for the photocatalytic degradation of 2,4-D in anoxic water; the chlorines were removed from benzene ring; the middle products of dichlorophenol, chlorophenol, phloroglucinol, and so forth were produced from the photocatalytic redox reaction of 2,4-D in anoxic water; parts of 2,4-D were decomposed completely, and CO2and H2O were produced.

CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Gregório Mateus Santana ◽  
Roberto Carlos Costa Lelis ◽  
Emerson Freitas Jaguaribe ◽  
Rayssa de Medeiros Morais ◽  
Juarez Benigno Paes ◽  
...  

ABSTRACT Considering the water scarcity problems facing many countries, the need for water reuse can make activated carbon (AC) an essential product for modern society. In this context, to contribute with better activated carbons that could be used to serve in water treatment, this article discusses these materials production, using bamboo as raw material, and analyses their application effectiveness. The bamboo was collected, transformed into activated carbon, by simultaneous chemical and physical activations, and named H3PO4/H2OAC. The obtained material was characterized by its yield, apparent density, ash content, thermogravimetric analysis, surface area, methylene blue and iodine indexes, pH and point of zero charge analysis, scanning electron microscopy and Boehm titration method. The AC was used as adsorbent for removing the metribuzin, 2,4-dichlorophenoxyacetic acid and furadan pesticides. The H3PO4/H2OAC had a surface area of 1196.30 m².g-1 and the obtained adsorption capacity was elevated for furadan (868.98 mg.g-1), metribuzin (756.47 mg.g-1) and 2,4-dichlorophenoxyacetic acid (274.70 mg.g-1).


2017 ◽  
Vol 33 (04) ◽  
pp. 1959-1968 ◽  
Author(s):  
Afini Razani ◽  
Abdul Halim Abdullah ◽  
Anwar Fitrianto ◽  
Nor Azah Yusof ◽  
Umar Ibrahim Gaya

2010 ◽  
Vol 36 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Leticia M. Torres-Martínez ◽  
Cecilia Sánchez-Trinidad ◽  
Vicente Rodríguez-González ◽  
Soo Wohn Lee ◽  
Ricardo Gómez

2019 ◽  
Vol 80 (5) ◽  
pp. 864-873 ◽  
Author(s):  
Fatemeh Abdollah ◽  
Seyed Mehdi Borghei ◽  
Elham Moniri ◽  
Salimeh Kimiagar ◽  
Homayon Ahmad Panahi

Abstract This study focused on the synthesis of TiO2–Zeolite nanocomposite through a sol–gel approach. The decrease in the size of the nanocomposite is considered a primary parameter to improve photocatalytic activity. In this regard, fabricated samples were exposed to laser irradiation (532 nm) for four different time intervals in order to investigate the size variation of the nanocomposite. FTIR, UV–Vis, XRD, DLS, SEM and EDX analyses were applied to characterize and determine the size of the products. An optimized nanocomposite sample, in term of the particle size, was used for photodegradation of 2,4-D herbicide from aqueous solution. Photodegradation was carried out under UV irradiation (12 W) and Xe lamp irradiation (200 W). The obtained results showed that laser irradiation time has a substantial effect on controlling the size of the nanocomposite. Results from the photocatalyst study indicated that the elimination of 2,4-D under the Xe lamp irradiation was higher compared with the UV irradiation. Also, the final synthesized nanocomposite exhibited higher catalytic activity for photodegradation of 2,4-D compared with pure Zeolite and pure anatase TiO2 samples. The reusability of TiO2–Zeolite nanocomposite was studied in four successive cycles to evaluate the removal of 2,4-D under UV irradiation.


2013 ◽  
Vol 11 (2) ◽  
pp. 633-639
Author(s):  
Clara Duca ◽  
Gustavo E. Imoberdorf ◽  
Madjid Mohseni

Abstract This study was focused on the synthesis of titania-based photocatalytic coatings with high photocatalytic activity, attrition resistance, and stability. Five different photocatalytic coatings were synthesized using the sol–gel technique. Three coatings were prepared using aqueous sols of TiO2 nanoparticles with different amounts of titanium tetraisopropoxide and different quantities and types of acids. The other two photocatalysts were composite sol–gel coatings which were prepared by incorporating commercial Degussa P25 into the TiO2 synthesized through sol–gel technique. The physical and optical properties of the immobilized photocatalysts were characterized with UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy, and light scattering. The photocatalytic activity of each coating was determined using a lab-scale differential photoreactor by measuring the degradation rate of a model micropollutant, the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The conversions of 2,4-D obtained with the TiO2 coatings without Degussa P25 were in the order of 7–23%, whereas the two composite coatings provided conversions in the range of 66–69%. In addition, one of the composite coatings showed a more homogeneous morphology and less cracking, and for this reason, it was more durable and showed lower attrition.


Sign in / Sign up

Export Citation Format

Share Document