A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

Nanoscale ◽  
2016 ◽  
Vol 8 (41) ◽  
pp. 17782-17787 ◽  
Author(s):  
Amira Alazmi ◽  
Omar El Tall ◽  
Shahid Rasul ◽  
Mohamed N. Hedhili ◽  
Shashikant P. Patole ◽  
...  
2018 ◽  
Vol 52 (22) ◽  
pp. 3015-3025 ◽  
Author(s):  
Daeyoung Kim ◽  
Heon Kang ◽  
Donghyun Bae ◽  
Seungjin Nam ◽  
Manuel Quevedo-Lopez ◽  
...  

The present study employed a combination of solution-based synthesis and mechanical milling to develop reduced graphene oxide/aluminum composites, in order to achieve uniform dispersion of reduced graphene oxide and strong interfaces between reduced graphene oxide and aluminum. First, spherical aluminum powder was flattened via mechanical milling to afford a large specific surface area and many reaction sites for the graphene oxide. A hydrophilic surface was then created by coating the aluminum powder with polyvinyl alcohol. The polyvinyl alcohol-coated aluminum slurry was mixed with a graphene oxide suspension, thereby inducing a reaction between graphene oxide and polyvinyl alcohol via hydrogen bonding. After thermal reduction, the composite powder was further ball milled and hot-pressed at 500℃ to produce a reduced graphene oxide/aluminum composite. The dispersion of reduced graphene oxide in the composite, as well as the mechanical and thermal behaviors of the composite, improved with increased flattening and specific surface area of the starting aluminum powder.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2064
Author(s):  
Faten Ermala Che Othman ◽  
Norhaniza Yusof ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Juhana Jaafar ◽  
...  

Various types of activated carbon nanofibers’ (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs’ structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Xiao ◽  
Wenjie Zhou ◽  
Yanhua Zhang ◽  
Liangliang Tian ◽  
Hongdong Liu ◽  
...  

A series of three-dimensional ZnxCd1-xS/reduced graphene oxide (ZnxCd1-xS/RGO) hybrid aerogels was successfully synthesized based on a one-pot hydrothermal approach, which were subsequently used as visible-light-driven photocatalysts for photoreduction of Cr(VI) in water. Over 95% of Cr(VI) was photoreduced by Zn0.5Cd0.5S/RGO aerogel material within 140 min, and such photocatalytic performance was superior to that of other ZnxCd1-xS/RGO aerogel materials (x≠0.5) and bare Zn0.5Cd0.5S. It was assumed that the enhanced photocatalytic activity of Zn0.5Cd0.5S/RGO aerogel was attributed to its high specific surface area and the preferable synergetic catalytic effect between Zn0.5Cd0.5S and RGO. Besides, Zn0.5Cd0.5S/RGO aerogel materials were robust and durable enough so that they could be reused several times with merely limited loss of photocatalytic activity. The chemical composition, phase, structure, and morphology of Zn0.5Cd0.5S/RGO aerogel material were carefully examined by a number of techniques like XRD, SEM, TEM, BET, Raman characterizations, and so on. It was found that Zn0.5Cd0.5S/RGO aerogel possessed hierarchically porous architecture with the specific surface area as high as 260.8 m2 g−1. The Zn0.5Cd0.5S component incorporated in Zn0.5Cd0.5S/RGO aerogel existed in the form of solid solution nanoparticles, which were uniformly distributed in the RGO matrix.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 936 ◽  
Author(s):  
Nikolaos Politakos ◽  
Iranzu Barbarin ◽  
Tomás Cordero-Lanzac ◽  
Alba Gonzalez ◽  
Ronen Zangi ◽  
...  

Polymer composite materials with hierarchical porous structure have been advancing in many different application fields due to excellent physico-chemical properties. However, their synthesis continues to be a highly energy-demanding and environmentally unfriendly process. This work reports a unique water based synthesis of monolithic 3D reduced graphene oxide (rGO) composite structures reinforced with poly(methyl methacrylate) polymer nanoparticles functionalized with epoxy functional groups. The method is based on reduction-induced self-assembly process performed at mild conditions. The textural properties and the surface chemistry of the monoliths were varied by changing the reaction conditions and quantity of added polymer to the structure. Moreover, the incorporation of the polymer into the structures improves the solvent resistance of the composites due to the formation of crosslinks between the polymer and the rGO. The monolithic composites were evaluated for selective capture of CO2. A balance between the specific surface area and the level of functionalization was found to be critical for obtaining high CO2 capacity and CO2/N2 selectivity. The polymer quantity affects the textural properties, thus lowering its amount the specific surface area and the amount of functional groups are higher. This affects positively the capacity for CO2 capture, thus, the maximum achieved was in the range 3.56–3.85 mmol/g at 1 atm and 25 °C.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiuzhen Yang ◽  
Tengzhi Zhou ◽  
Renjian Deng ◽  
Zhenya Zhu ◽  
Atif Saleem ◽  
...  

AbstractWe created 3D-reduced graphene oxide/sodium alginate double network (GAD) beads to address the problem of local water pollution by antimony. GAD is a novel material with the high specific surface area of graphene and biosecurity of sodium alginate. Due to the introduction of graphene, the thermal stability and specific surface area of GAD are enhanced, as shown from the FTIR, TGA, BET, Raman, and XRD characterizations. The influence of different environmental variables-such as the pH, dosage, temperature, contact time, and sodium chloride concentration on the Sb(III) sorption with GAD-was investigated. The adsorption results fit well with both the pseudo-second order (R2 > 0.99) and Freundlich (R2 > 0.99) isotherm models. The temperature rise has a negative influence on the adsorption. The Langmuir adsorption capacity is 7.67 mg/g, which is higher than many adsorbents. The GAD results from the fixed-bed adsorption experiment were a good fit with the Thomas model (R2 > 0.99). In addition, GAD appears to be a renewable and ideal adsorbent for the treatment of antimony pollution in aqueous systems.


2021 ◽  
pp. 089270572110019
Author(s):  
Vy T Nguyen ◽  
Nhan T Tran ◽  
Trung L Huynh ◽  
Duy VH Le ◽  
DongQuy Hoang

Cellulose microfibers were successfully fabricated from Vietnamese Nipa palm by mechanical and chemical treatments. The Nipa palm petioles were simply rolled, pressed, and separated. They were then pretreated with an alkaline solution and submitted to acid hydrolysis to remove the impurities (tCell). The microfibers were reinforced with reduced graphene oxide to form a hybrid that was reduced with hydrazine hydrate in the last stage (tCell-rGO). The structure and properties of tCell and tCell-rGO were evaluated by FTIR, XRD, DSC, TGA, SEM, BET, and the sheet resistance. It was observed that the treated cellulose microfibers exhibited a diameter of 10–20 μm and had good crystallinity in the structure. Both tCell and tCell-rGO exhibited low-density values of 1.52 kg/m3 and 0.58 kg/m3, respectively, and had good specific surface area values of 11.2 m2/g and 13.0 m2/g, respectively. These results supported the decrease in the density and the increase in the specific surface area of the tCell-rGO samples in comparison with the tCell. The existence of rGO sheets in the cellulose microfiber matrix resulted in changes in the structure, arrangement, and crystallization of pristine microfibers. The thermal property and electrical conductivity of the reinforced GO cellulose microfibers were significantly improved. rGO not only showed its role as a surface modification agent that helps the cellulose microfibers disperse better in the non-polar substrate, but also contributed to the increase of the heat-stable and mechanical properties of polymer. The thermal stability of tCell-rGO/PMMA composite was notably improved more than 40°C in maximum decomposition temperature by an emulsion polymerization technique. The material based on cellulose microfibers from the Vietnamese Nipa palm tree and reduced graphene oxide overcame some disadvantages such as the poor heat resistance, poor dispersion of the original fibers in the non-polar polymer and displayed great potential for environmentally friendly future applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2093
Author(s):  
Yang Shen ◽  
Luca Maurizi ◽  
Giuliana Magnacca ◽  
Vittorio Boffa ◽  
Yuanzheng Yue

The alkali-activation method allows for obtaining highly porous carbon materials. In this study, we explored the effect of activation temperature and potassium hydroxide concentration on the pore structure of reduced graphene oxide (rGO), as potential membrane material. Above 700 °C, potassium species react with the carbon plane of rGO to form nanopores. This activation process is deeply studied through DSC measurements and isothermal gravimetric analysis. The porosity of the formed materials consists of both micro- and mesopores, with most of the pores having a size smaller than 10 nm. The specific surface area and pore volume increase with increasing the potassium hydroxide/graphene oxide weight ratio (KOH/GO) up to 7 (897 m2∙g−1 and 0.97 cm3∙g−1, respectively). However, for a synthesis mixture with KOH/GO of 10, the specific surface area of the produced material drops to 255 m2∙g−1. The film-forming ability of the porous reduced graphene oxide (PRGO) was tested by drop-casting on porous silicon carbide substrates. In this case, continuous PRGO films were obtained only from dispersions with 5 g∙L−1 GO loading and KOH/GO ≤3. Such films can still have high specific surface area and pore volume (up to 528 m2∙g−1 and 0.53 cm3∙g−1) and main pore volume <10 nm. Hence, they can potentially be applied as membrane devices, but their scalability and their adhesion on the substrate under realistic filtration conditions still remain challenges.


Sign in / Sign up

Export Citation Format

Share Document