scholarly journals Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jingjing Ye ◽  
Wei Ai ◽  
Fenglin Zhang ◽  
Xiaotong Zhu ◽  
Gang Shu ◽  
...  

Porcine bone marrow mesenchymal stem cells (pBMSCs) have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium (Ca2+o) on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mMCa2+osignificantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly,Ca2+ostimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition,Ca2+oresulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR) by its antagonist NPS2143 abolished the aforementioned effects ofCa2+o. Moreover,Ca2+o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response toCa2+owas associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair.

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Bin Zhao ◽  
Gengyan Xing ◽  
Aiyuan Wang

Abstract Background This study was conducted with the aim of exploring the effect of the BMP signaling pathway on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (rBMSCs) in rats with osteoporosis (OP). Methods The bilateral ovaries of female SD rats were resected for the establishment of a rat OP model. The osteoblastic differentiation of isolated rBMSCs was identified through osteogenic induction. Adipogenetic induction and flow cytometry (FCM) were used to detect adipogenic differentiation and the expression of rBMSC surface markers. The rBMSCs were grouped into the blank group, NC group, si-BMP2 group, and oe-BMP2 group. The expression levels of key factors and osteogenesis-related factors were determined by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). The formation of calcified nodules was observed by alizarin red staining. ALP activity was measured by alkaline phosphatase staining. Results The rats with OP had greater weight but decreased bone mineral density (BMD) than normal rats (all P < 0.01). The rBMSCs from rats with OP were capable of osteoblastic differentiation and adipogenic differentiation and showed high expression of CD44 (91.3 ± 2.9%) and CD105 (94.8 ± 2.1%). Compared with the blank group, the oe-BMP2 group had elevated BMP-2 and Smad1 levels and an increase in calcified nodules and ALP-positive staining areas (all P < 0.05). Moreover, the expression levels of Runx2, OC, and OPN in the oe-BMP2 group were relatively higher than those in the blank group (all P < 0.05). The findings in the si-BMP2 group were opposite to those in the oe-BMP2 group. Conclusion BMP signaling pathways activated by BMP-2 can promote the osteoblastic differentiation of rBMSCs from rats with OP.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianliang Gao ◽  
Shouyu Xiang ◽  
Xiao Wei ◽  
Ram Ishwar Yadav ◽  
Menghu Han ◽  
...  

Osteoporosis (OP) is a metabolic disease characterized by decreased bone mass and increased risk of fragility fractures, which significantly reduces the quality of life. Stem cell-based therapies, especially using bone marrow mesenchymal stem cells (BMSCs), are a promising strategy for treating OP. Nevertheless, the survival and differentiation rates of the transplanted BMSCs are low, which limits their therapeutic efficiency. Icariin (ICA) is a traditional Chinese medicine formulation that is prescribed for tonifying the kidneys. It also promotes the proliferation and osteogenic differentiation of BMSCs, although the specific mechanism remains unclear. Based on our previous research, we hypothesized that ICA promotes bone formation via the sclerostin/Wnt/β-catenin signaling pathway. We isolated rat BMSCs and transfected them with sclerostin gene (SOST) overexpressing or knockdown constructs and assessed osteogenic induction in the presence or absence of ICA. Sclerostin significantly inhibited BMSC proliferation and osteogenic differentiation, whereas the presence of ICA not only increased the number of viable BMSCs but also enhanced ALP activity and formation of calcium nodules during osteogenic induction. In addition, the osteogenic genes including Runx2, β-catenin, and c-myc as well as antioxidant factors (Prdx1, Cata, and Nqo1) were downregulated by sclerostin and restored by ICA treatment. Mechanistically, ICA exerted these effects by activating the Wnt/β-catenin pathway. In conclusion, ICA can promote the proliferation and osteogenic differentiation of BMSCs in situ and therefore may enhance the therapeutic efficiency of BMSC transplantation in OP.


Sign in / Sign up

Export Citation Format

Share Document