scholarly journals Effects of Electroacupuncture Treatment on Bone Cancer Pain Model with Morphine Tolerance

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Lei Sima ◽  
Bifa Fan ◽  
Longtao Yan ◽  
Yuan Shui

Objective. To explore the efficacy of electroacupuncture treatment in cancer induced bone pain (CIBP) rat model with morphine tolerance and explore changes of calcitonin-gene related peptide (CGRP) expression in dorsal root ganglion (DRG).Methods. Forty SD rats were divided into five groups: sham, CIBP (B), CIBP + morphine (BM), CIBP + electroacupuncture (BE), and CIBP + morphine + electroacupuncture (BME). B, BM, BE, and BME groups were prepared CIBP model. The latter three groups then accepted morphine, electroacupuncture, and morphine combined electroacupuncture, separately, nine days consecutively (M1 to M9). Mechanical withdraw threshold (MWT) was evaluated.Results. BE group only had differences in M1, M2, and M3 compared to B group (P<0.01). From M5, BM group showed significantly decreased MWT. Electroacupuncture could obtain analgesic effects only at early stage (M1 to M5). From M5 to M9, BME had the differences with BM group (P<0.01). IOD value of CGRP in BM and BME was substantially less than in B group. CGRP in BME was significantly lower than that in BM group (P<0.01).Conclusion. When used in combination with electroacupuncture, morphine could result in improving analgesic effects and reducing tolerance. CGRP may be associated with pain behaviors.

2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Hong-Xia Mei ◽  
Min-Hong Zhou ◽  
Xing-Wang Zhang ◽  
Xi-Xi Huang ◽  
Yong-Le Wang ◽  
...  

The present study aimed to investigate the effects of miR-338 on morphine tolerance through the targeting of CXC chemokine receptor-4 (CXCR4) in a rat model of bone cancer pain (BCP). Sprague–Dawley (SD) rats were obtained and divided into model saline (n=10), model morphine (n=50), normal saline (n=10) and normal morphine (healthy rats, n=10) groups. After BCP rat model establishment, the remaining SD rats (n=40) in the model saline group were assigned into pLV-THM-miR-338, pLV-THM-anti-miR-338, CXCR4 shRNA, blank and PBS groups. Luciferase reporter gene assay was used for luciferase activity. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to detect the miR-338 and CXCR4 mRNA and protein expression. The model saline group showed increased mRNA and protein expressions of CXCR4 but decreased miR-338 compared with the model saline group, and the model morphine group had increased mRNA and protein expressions of CXCR4 but decreased miR-338 compared with the model saline group. The mRNA and protein expressions of miR-338 in the pLV-THM-miR-338 group increased remarkably while those of the pLV-THM-anti-miR-338 group decreased significantly compared with the CXCR4 shRNA, blank and PBS groups. The pLV-THM-miR-338, pLV-THM-anti-miR-338, CXCR4 shRNA and CXCR4 mRNA groups all had lower mRNA and protein expressions of CXCR4 than those in the blank and PBS groups. miR-338 exerts significant influence in the inhibition of morphine tolerance by suppressing CXCR4 in BCP.


2018 ◽  
Vol 3 ◽  
pp. 78 ◽  
Author(s):  
M.A. Bangash ◽  
Sascha R.A. Alles ◽  
Sonia Santana-Varela ◽  
Queensta Millet ◽  
Shafaq Sikandar ◽  
...  

Background: Sensory neurons play an essential role in almost all pain conditions, and have recently been classified into distinct subsets on the basis of their transcriptomes. Here we have analysed alterations in dorsal root ganglia (DRG) gene expression using microarrays in mouse models related to human chronic pain. Methods: Six different pain models were studied in male C57BL/6J mice: (1) bone cancer pain using cancer cell injection in the intramedullary space of the femur; (2) neuropathic pain using partial sciatic nerve ligation; (3) osteoarthritis pain using mechanical joint loading; (4) chemotherapy-induced pain with oxaliplatin; (5) chronic muscle pain using hyperalgesic priming; and (6) inflammatory pain using intraplantar complete Freund’s adjuvant. Microarray analyses were performed using RNA isolated from dorsal root ganglia and compared to sham/vehicle treated controls. Results: Differentially expressed genes (DEGs) were identified. Known and previously unreported genes were found to be dysregulated in each pain model. The transcriptomic profiles for each model were compared and expression profiles of DEGs within subsets of DRG neuronal populations were analysed to determine whether specific neuronal subsets could be linked to each of the pain models.  Conclusions: Each pain model exhibits a unique set of altered transcripts implying distinct cellular responses to different painful stimuli. No simple direct link between genetically distinct sets of neurons and particular pain models could be discerned.


2016 ◽  
Vol 7;19 (7;9) ◽  
pp. E1063-E1077
Author(s):  
Xu

Background: Cancer pain is a complex medical syndrome. Understanding its underlying mechanisms relies on the use of animal models which can mimic the human condition. A crucial component of this model is the quantity of tumor cells; however, the exact relationship between the doses of tumor cells on bone cancer pain is yet unknown. Objective: We explored the relationship of different doses of Walker 256 carcinoma cells using a bone cancer pain model in rats, and evaluated its success and stability. Study Design: Experimental animal study using a comparative design. Setting: Experimental Animal Center and Tumor Institute of Traditional Chinese Medicine. Methods: We constructed the bone cancer pain model by implanting Walker 256 carcinoma cells into the right tibia of Sprague-Dawley (SD) rats (150 – 170 g). Spontaneous pain, mechanical threshold, and paw withdrawal latency (PWL) were measured and x-ray, bone mineral density (BMD), histological, interleukin-1 beta (IL-1β) mRNA, carboxyterminal telopeptide of type I collagen (ICTP), and bone alkaline phosphatase (BAP) were analyzed for bone pain model evaluation. Results: The results showed that: (1) the 3 doses (3×105 , 3.5×105 , 4×105 ) of Walker 256 carcinoma cells can induce bone cancer pain from day 7 to day 21 after implantation into the right tibia of SD rats; (2) compared to the control group, 3×105 , 3.5×105 , and 4×105 Walker 256 carcinoma cells produced different pain manifestations, where the 3.5×105 dose of Walker 256 carcinoma cells resulted in the greatest bone cancer pain response; (3) the 3.5×105 dose induced the lowest mortality rate in rats; (4) Walker 256 carcinoma cells (3×105 , 3.5×105 , and 4×105 ) resulted in a significant decrease in the general condition and body weight of rats, where the 3.5×105 and 4×105 doses of carcinoma cells produced a greater effect than 3×105 dose of carcinoma cells; (5) progressive spontaneous pain, PWL, and mechanical threshold were exacerbated by 3.5×105 and 4×105 doses of carcinoma cells; (6) implantation of 3.5×105 and 4×105 doses of carcinoma cells induced progressive bone destruction and decrease in BMD; (7) ICTP and BAP were significantly increased following the implantation of 3.5×105 and 4×105 doses of carcinoma cells; (8) IL-1βmRNA was significantly up-regulated in the spinal cord of rats implanted with 3.5×105 and 4×105 doses of carcinoma cells. Limitations: One limitation of this study was the small sample size; therefore, additional research is needed to provide better validation. Another limitation is the unavailability of small animal Micro computed tomography (CT), which is a more advanced and precise technique in determining bone marrow density than the x-ray imaging system we used. In addition, ethology experiments during late-stage tumor progression can be more objective. Conclusion: This study provides evidence that implantation of 3.5×105 and 4×105 dose of Walker 256 carcinoma cells produced the greatest effects in relation to the bone cancer pain model in SD rats, and 3.5×105 dose induced the lowest mortality rate. Key words: Bone cancer pain model, Walker 256 carcinoma cells, different doses


2014 ◽  
pp. 415 ◽  
Author(s):  
Naoto Tomotsuka ◽  
Ryuji Kaku ◽  
Norihiko Obata ◽  
Yoshikazu Matsuoka ◽  
Hirotaka Kanzaki ◽  
...  

Oncology ◽  
2008 ◽  
Vol 74 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Akira Kato ◽  
Kazuhisa Minami ◽  
Hisanori Ito ◽  
Takako Tomii ◽  
Mitsunobu Matsumoto ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Mao-yin Zhang ◽  
Yue-peng Liu ◽  
Lian-yi Zhang ◽  
Dong-mei Yue ◽  
Dun-yi Qi ◽  
...  

Objective. The present study is to investigate the analgesic roles of L-THP in rats with bone cancer pain caused by tumor cell implantation (TCI).Methods. Thermal hyperalgesia and mechanical allodynia were measured at different time points before and after operation. L-THP (20, 40, and 60 mg/kg) were administrated intragastrically at early phase of postoperation (before pain appearance) and later phase of postoperation (after pain appearance), respectively. The concentrations of TNF-α, IL-1β, and IL-18 in spinal cord were measured by enzyme-linked immunosorbent assay. Western blot was used to test the activation of astrocytes and microglial cells in spinal cord after TCI treatment.Results. TCI treatment induced significant thermal hyperalgesia and mechanical allodynia. Administration of L-THP at high doses significantly prevented and/or reversed bone cancer-related pain behaviors. Besides, TCI-induced activation of microglial cells and the increased levels of TNF-αand IL-18 were inhibited by L-THP administration. However, L-THP failed to affect TCI-induced astrocytes activation and IL-1βincrease.Conclusion. This study suggests the possible clinical utility of L-THP in the treatment of bone cancer pain. The analgesic effects of L-THP on bone cancer pain maybe underlying the inhibition of microglial cells activation and proinflammatory cytokines increase.


2016 ◽  
Author(s):  
Louis Dore-Savard ◽  
Pascal Tetreault ◽  
Melisange Roux ◽  
Marylie Martel ◽  
Myriam Lemire ◽  
...  

Bone metastases are a source of intractable pain, resistant to conventional opioid and non-opioid analgesics. The neurotensin system represents a potential pathway toward bone cancer pain (BCP) relieve via the inhibition of its receptors NTS1 and NTS2. Capitalizing on our recent results using neurotensin analogs in inflammatory and neuropathic pain models, we here show, for the first time, a potential role for neurotensin receptors agonists in the treatment of BCP. The novel non-selective agonist JMV-2009 (300 μg/kg) reversed mechanical allodynia in our rodent BCP model at both early and late stages of the disease. The NTS2-selective agonist JMV-431 (90 μg/kg), in addition to anti-allodynia, also had an effect on weight bearing deficits. In parallel, we tested proven analgesics from several classes to put the effect of neurotensin analogs in perspective and found that morphine (3 mg/kg), tramadol (15 mg/kg) and amitriptyline (10 mg/kg) had mild effects on BCP while the cannabinoid nabilone (1 mg/kg) significantly reversed both allodynia and weight bearing deficits. Taken together, our results affirm the potential of the modulation of the neurotensin system for the development of new analgesics for the treatment of bone cancer pain.


Sign in / Sign up

Export Citation Format

Share Document