scholarly journals Fault Reconstruction Based on Sliding Mode Observer for Current Sensors of PMSM

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Changfan Zhang ◽  
Huijun Liao ◽  
Xiangfei Li ◽  
Jian Sun ◽  
Jing He

This paper deals with a method of phase current sensor fault reconstruction for permanent magnet synchronous motor (PMSM) drives. A new state variable is introduced so that an augmented system can be constructed to treat PMSM sensor faults as actuator faults. This method uses the PMSM two-phase stationary reference frame fault model and a sliding mode variable structure observer to reconstruct fault signals. A logic algorithm is built to isolate and identify the faulty sensor for a stator phase current fault after reconstructing the two-phase stationary reference frame fault signals, which allows the phase fault signals to be reconstructed. Simulation results are presented to illustrate the functionality of the theoretical developments.

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Jing He ◽  
Changfan Zhang

This paper presents a precision fault reconstruction scheme for a class of nonlinear systems involving unknown input disturbances. First, using the coordinate transformation algorithm, the disturbances and faults of the system are fully decoupled. Therefore, it is possible to eliminate the influence of disturbances to the system, namely, better disturbances robustness. On this basis, the design of a sliding mode state observer makes the most genuine reconstruction realizable, instead of estimation of faults. Furthermore, with the equivalent principle of sliding mode variable structure, the precision reconstruction of arbitrary nonlinear faults is achieved. Finally, the applications of fault reconstruction in a third-order nonlinear theoretical model with disturbances and in a single-link robot system, respectively, have demonstrated the validity of the proposed scheme.


2014 ◽  
Vol 668-669 ◽  
pp. 629-632 ◽  
Author(s):  
Zhi Yu Huang ◽  
Jun Bing Chen

As the electric vehicles usually run under complex conditions of city road, there always exists parameter perturbation of motor, which will affect the vehicle performance. To solve the problem, an improved sliding mode variable structure control (SMC) method which combines continuous function and reaching law has been proposed in this paper. Then the improved vector control algorithm’s codes are generated automatically in the MMC (Model-based Motor Control) platform. The results show that the improved SMC algorithm has small chattering and strong robustness to the parameter perturbation and the external disturbances.


2013 ◽  
Vol 313-314 ◽  
pp. 15-19
Author(s):  
Guo Lin Che ◽  
Hua Lai

For getting the High-performance electric vehicle control which has good dynamic, static characteristics and robustness, a direct torque control strategy of fuzzy sliding mode variable structure was designed to IPM motor. The method changes torque ripple, speed overshoot, poor anti-disturbance ability of the conventional DTC, and weakened the serious chatting which existed in sliding mode variable structure control. The simulation results show the feasibility and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document