scholarly journals Rolling Bearing Diagnosing Method Based on Time Domain Analysis and Adaptive FuzzyC-Means Clustering

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sheng Fu ◽  
Kun Liu ◽  
Yonggang Xu ◽  
Yi Liu

Vibration signal analysis is one of the most effective methods for mechanical fault diagnosis. Available part of the information is always concealed in component noise, which makes it much more difficult to detect the defection, especially at early stage of the development. This paper presents a new approach for mechanical fault diagnosis based on time domain analysis and adaptive fuzzyC-means clustering. By analyzing vibration signal collected, nine common time domain parameters are calculated. This lot of data constitutes data matrix as characteristic vectors to be detected. And using adaptive fuzzyC-means clustering, the optimal clustering number can be gotten then to recognize different fault types. Moreover, five parameters, including variance, RMS, kurtosis, skewness, and crest factor, of the nine are selected as the new eigenvector matrix to be clustered for more optimal clustering performance. The test results demonstrate that the proposed approach has a sensitive reflection towards fault identifications, including slight fault.

Author(s):  
Subrata Mukherjee ◽  
Vikash Kumar ◽  
Somnath Sarangi

Fault diagnosis of the gearbox is a decisive part of the modern industry to find the many gearbox defects like gear tooth crack, chipped or broken, etc. But sometimes, the nonstationary properties of vibration signal and low energy of minimal faults make this procedure very challenging. Previously, many types of techniques have been developed for gearbox condition monitoring. But most of the methods are dealing with conventional techniques of the gearbox condition monitoring, such as time-domain analysis or frequency domain analysis. Most of the conventional methods are not suitable for the nonstationary vibration signal. Thus, this paper presents a novel gearbox fault diagnosis technique using conditional temporal moments and an optimizable support vector machine (SVM). This work also presents an integrated features extraction technique based on the standard features, i.e., statistical and spectral features with the combinations of moment features. The impact of the four conditional temporal moments of each gearbox condition is also presented. This work shows that the proposed method successfully classifies and categorizes the gearbox faults at an early stage.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 3409-3435 ◽  
Author(s):  
Issam Attoui ◽  
Brahim Oudjani ◽  
Nadir Boutasseta ◽  
Nadir Fergani ◽  
Mohammed-Salah Bouakkaz ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 1286-1289 ◽  
Author(s):  
Jie Shi ◽  
Xing Wu ◽  
Nan Pan ◽  
Sen Wang ◽  
Jun Zhou

In order to monitor the operation state and implement fault diagnosis of rolling bearing in rotating machinery, this paper presents a method of fault diagnosis of rolling bearing, which is based on EMD and resonance demodulation. Using EMD to decompose the signal, which comes from QPZZ-II experimental station, the components of intrinsic mode function (IMF) will be obtained. Then, calculating the correlation coefficient of each IMF component, the highest correlation coefficient of IMF component will be analyzed by resonance demodulation. Finally, the experimental results show that the method can accurately identify and diagnose the running state and bearing fault type.


2014 ◽  
Vol 596 ◽  
pp. 437-441 ◽  
Author(s):  
Yan Ping Guo ◽  
Yu Xiong ◽  
Guo Cui Song

This paper presents a novel single-point rolling bearing fault diagnosis mechanism through vibration signal analysis. It is highlighted that the rolling bearing operational state can be well estimated by the first small set of Intrinsic Mode Function (IMF) components of the original vibration measurements through Empirical Mode Decomposition (EMD). These IMF components can be further translated into envelope spectrum by using Hilbert Transform. As a result, the difference of fault characteristic frequencies (DFCF) is derived to properly characterize different fault patterns for fault diagnosis. The suggested method is implemented and evaluated in a rolling bearing test bed for a range of failure scenarios (e.g. inner and outer raceway fault, rolling elements fault) with extensive vibration measurements. The result demonstrates that the proposed solution is effective for characterizing and detecting arrange of rolling bearing faults.quality).


2014 ◽  
Vol 898 ◽  
pp. 892-895
Author(s):  
Zhan Jie Lv ◽  
Wen Xu ◽  
Gui Ji Tang ◽  
Guo Dong Han ◽  
Shu Ting Wan

For gearbox common type of fault, leads to common methods gear fault diagnosis, according to the various parameters of the gearbox, to give a gearbox fault frequencies. Using mat lab signal analysis, by the time domain analysis, frequency domain analysis, cestrum analysis, signal processing methods envelope spectrum consolidated results there is a fault in the gearbox countershaft. This papers they have certain significance to gear fault diagnosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiafei Long ◽  
Ping Yang ◽  
Hongxia Guo ◽  
Zhuoli Zhao ◽  
Xiwen Wu

Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of the multisensor data fusion technique and time-domain analysis. First, the derived method calculates the time-domain indices of raw signals, and the fused time-domain indexes dataset are obtained by the multisensor data fusion. Then, the CBA-based KELM recognition model that can identify fault patterns of a wind turbine gearbox (WTB) is automatically established with the fused dataset. The dataset includes a large number of samples involving 6 fault types under different operational conditions by 5 accelerometers. The effectiveness and feasibility of this proposed method are proved by adopting the datasets originated from the test rig, and it achieves a diagnostic accuracy of 96.25%. Finally, compared with the other peer-to-peer methods, the experimental classification results show that the proposed CBA-KELM technique has the best performances.


2011 ◽  
Vol 328-330 ◽  
pp. 1717-1720
Author(s):  
Zi Gui Li ◽  
Bi Juan Yan

In this paper, the method of combining the time-domain analysis of empirical mode decomposition (EMD) and fuzzy clustering is explored for the hoist gearbox fault diagnosis. Firstly, it adopts the EMD technique to decompose the signal of vibration. With it, any complicated dataset can be decomposed into a finite and often small number of intrinsic mode functions (IMFs). Then a number of IMFs containing main fault information were selected, from which time domain feature parameters-- variance and kurtosis coefficient were extracted. At last, fuzzy clustering is used to diagnose and identify the kind of fault. The numerical simulation and the analysis of the response signal data from the hoist gearbox show that the method is effective at discriminating the three condition of the gear, i.e. the normal, surface fatigue pitting and cracked tooth.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Xingang WANG ◽  
Chao WANG

Due to the difficulty that excessive feature dimension in fault diagnosis of rolling bearing will lead to the decrease of classification accuracy, a fault diagnosis method based on Xgboost algorithm feature extraction is proposed. When the Xgboost algorithm classifies features, it generates an order of importance of the input features. The time domain features were extracted from the vibration signal of the rolling bearing, the time-frequency features were formed by the singular value of the modal components that were decomposed by the variational mode decomposition. Firstly, the extracted time domain and time-frequency domain features were input into the support vector machine respectively to observe the fault diagnosis accuracy. Then, Xgboost algorithm was used to rank the importance of features and got the accuracy of fault diagnosis. Finally, important features were extracted and the extracted features were input into the support vector machine to observe the fault diagnosis accuracy. The result shows that the fault diagnosis accuracy of rolling bearing is improved after important feature extraction in time domain and time-frequency domain by Xgboost.


Sign in / Sign up

Export Citation Format

Share Document