scholarly journals An Online Causal Inference Framework for Modeling and Designing Systems Involving User Preferences: A State-Space Approach

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Ibrahim Delibalta ◽  
Lemi Baruh ◽  
Suleyman Serdar Kozat

We provide a causal inference framework to model the effects of machine learning algorithms on user preferences. We then use this mathematical model to prove that the overall system can be tuned to alter those preferences in a desired manner. A user can be an online shopper or a social media user, exposed to digital interventions produced by machine learning algorithms. A user preference can be anything from inclination towards a product to a political party affiliation. Our framework uses a state-space model to represent user preferences as latent system parameters which can only be observed indirectly via online user actions such as a purchase activity or social media status updates, shares, blogs, or tweets. Based on these observations, machine learning algorithms produce digital interventions such as targeted advertisements or tweets. We model the effects of these interventions through a causal feedback loop, which alters the corresponding preferences of the user. We then introduce algorithms in order to estimate and later tune the user preferences to a particular desired form. We demonstrate the effectiveness of our algorithms through experiments in different scenarios.

Author(s):  
Muskan Patidar

Abstract: Social networking platforms have given us incalculable opportunities than ever before, and its benefits are undeniable. Despite benefits, people may be humiliated, insulted, bullied, and harassed by anonymous users, strangers, or peers. Cyberbullying refers to the use of technology to humiliate and slander other people. It takes form of hate messages sent through social media and emails. With the exponential increase of social media users, cyberbullying has been emerged as a form of bullying through electronic messages. We have tried to propose a possible solution for the above problem, our project aims to detect cyberbullying in tweets using ML Classification algorithms like Naïve Bayes, KNN, Decision Tree, Random Forest, Support Vector etc. and also we will apply the NLTK (Natural language toolkit) which consist of bigram, trigram, n-gram and unigram on Naïve Bayes to check its accuracy. Finally, we will compare the results of proposed and baseline features with other machine learning algorithms. Findings of the comparison indicate the significance of the proposed features in cyberbullying detection. Keywords: Cyber bullying, Machine Learning Algorithms, Twitter, Natural Language Toolkit


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ari Z. Klein ◽  
Abeed Sarker ◽  
Davy Weissenbacher ◽  
Graciela Gonzalez-Hernandez

Abstract Social media has recently been used to identify and study a small cohort of Twitter users whose pregnancies with birth defect outcomes—the leading cause of infant mortality—could be observed via their publicly available tweets. In this study, we exploit social media on a larger scale by developing natural language processing (NLP) methods to automatically detect, among thousands of users, a cohort of mothers reporting that their child has a birth defect. We used 22,999 annotated tweets to train and evaluate supervised machine learning algorithms—feature-engineered and deep learning-based classifiers—that automatically distinguish tweets referring to the user’s pregnancy outcome from tweets that merely mention birth defects. Because 90% of the tweets merely mention birth defects, we experimented with under-sampling and over-sampling approaches to address this class imbalance. An SVM classifier achieved the best performance for the two positive classes: an F1-score of 0.65 for the “defect” class and 0.51 for the “possible defect” class. We deployed the classifier on 20,457 unlabeled tweets that mention birth defects, which helped identify 542 additional users for potential inclusion in our cohort. Contributions of this study include (1) NLP methods for automatically detecting tweets by users reporting their birth defect outcomes, (2) findings that an SVM classifier can outperform a deep neural network-based classifier for highly imbalanced social media data, (3) evidence that automatic classification can be used to identify additional users for potential inclusion in our cohort, and (4) a publicly available corpus for training and evaluating supervised machine learning algorithms.


2021 ◽  
pp. 68-80
Author(s):  
Muhammad Umer Hashmi ◽  
Ngoc Duy Nguyen ◽  
Michael Johnstone ◽  
Kathryn Backholer ◽  
Asim Bhatti

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mona Bokharaei Nia ◽  
Mohammadali Afshar Kazemi ◽  
Changiz Valmohammadi ◽  
Ghanbar Abbaspour

PurposeThe increase in the number of healthcare wearable (Internet of Things) IoT options is making it difficult for individuals, healthcare experts and physicians to find the right smart device that best matches their requirements or treatments. The purpose of this research is to propose a framework for a recommender system to advise on the best device for the patient using machine learning algorithms and social media sentiment analysis. This approach will provide great value for patients, doctors, medical centers, and hospitals to enable them to provide the best advice and guidance in allocating the device for that particular time in the treatment process.Design/methodology/approachThis data-driven approach comprises multiple stages that lead to classifying the diseases that a patient is currently facing or is at risk of facing by using and comparing the results of various machine learning algorithms. Hereupon, the proposed recommender framework aggregates the specifications of wearable IoT devices along with the image of the wearable product, which is the extracted user perception shared on social media after applying sentiment analysis. Lastly, a proposed computation with the use of a genetic algorithm was used to compute all the collected data and to recommend the wearable IoT device recommendation for a patient.FindingsThe proposed conceptual framework illustrates how health record data, diseases, wearable devices, social media sentiment analysis and machine learning algorithms are interrelated to recommend the relevant wearable IoT devices for each patient. With the consultation of 15 physicians, each a specialist in their area, the proof-of-concept implementation result shows an accuracy rate of up to 95% using 17 settings of machine learning algorithms over multiple disease-detection stages. Social media sentiment analysis was computed at 76% accuracy. To reach the final optimized result for each patient, the proposed formula using a Genetic Algorithm has been tested and its results presented.Research limitations/implicationsThe research data were limited to recommendations for the best wearable devices for five types of patient diseases. The authors could not compare the results of this research with other studies because of the novelty of the proposed framework and, as such, the lack of available relevant research.Practical implicationsThe emerging trend of wearable IoT devices is having a significant impact on the lifestyle of people. The interest in healthcare and well-being is a major driver of this growth. This framework can help in accelerating the transformation of smart hospitals and can assist doctors in finding and suggesting the right wearable IoT for their patients smartly and efficiently during treatment for various diseases. Furthermore, wearable device manufacturers can also use the outcome of the proposed platform to develop personalized wearable devices for patients in the future.Originality/valueIn this study, by considering patient health, disease-detection algorithm, wearable and IoT social media sentiment analysis, and healthcare wearable device dataset, we were able to propose and test a framework for the intelligent recommendation of wearable and IoT devices helping healthcare professionals and patients find wearable devices with a better understanding of their demands and experiences.


Sign in / Sign up

Export Citation Format

Share Document