scholarly journals Cyber Bullying Detection for Twitter Using ML Classification Algorithms

Author(s):  
Muskan Patidar

Abstract: Social networking platforms have given us incalculable opportunities than ever before, and its benefits are undeniable. Despite benefits, people may be humiliated, insulted, bullied, and harassed by anonymous users, strangers, or peers. Cyberbullying refers to the use of technology to humiliate and slander other people. It takes form of hate messages sent through social media and emails. With the exponential increase of social media users, cyberbullying has been emerged as a form of bullying through electronic messages. We have tried to propose a possible solution for the above problem, our project aims to detect cyberbullying in tweets using ML Classification algorithms like Naïve Bayes, KNN, Decision Tree, Random Forest, Support Vector etc. and also we will apply the NLTK (Natural language toolkit) which consist of bigram, trigram, n-gram and unigram on Naïve Bayes to check its accuracy. Finally, we will compare the results of proposed and baseline features with other machine learning algorithms. Findings of the comparison indicate the significance of the proposed features in cyberbullying detection. Keywords: Cyber bullying, Machine Learning Algorithms, Twitter, Natural Language Toolkit

Author(s):  
Akshma Chadha ◽  
Baijnath Kaushik

Abstract Suicide is a major health issue nowadays and has become one of the highest reason for deaths. There are many negative emotions like anxiety, depression, stress that can lead to suicide. By identifying the individuals having suicidal ideation beforehand, the risk of them completing suicide can be reduced. Social media is increasingly becoming a powerful platform where people around the world are sharing emotions and thoughts. Moreover, this platform in some way is working as a catalyst for invoking and inciting the suicidal ideation. The objective of this proposal is to use social media as a tool that can aid in preventing the same. Data is collected from Twitter, a social networking site using some features that are related to suicidal ideation. The tweets are preprocessed as per the semantics of the identified features and then it is converted into probabilistic values so that it will be suitably used by machine learning and ensemble learning algorithms. Different machine learning algorithms like Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Decision Tree, Logistic Regression, Support Vector Machine were applied on the data to predict and identify trends of suicidal ideation. Further the proposed work is evaluated with some ensemble approaches like Random Forest, AdaBoost, Voting Ensemble to see the improvement.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 793 ◽  
Author(s):  
B Shanthi ◽  
Mahalakshmi N ◽  
Shobana M

Structural Health Monitoring is essential in today’s world where large amount of money and labour are involved in building a structure. There arises a need to periodically check whether the built structure is strong and flawless, also how long it will be strong and if not how much it is damaged. These information are needed so that the precautions can be made accordingly. Otherwise, it may result in disastrous accidents which may take away even human lives. There are various methods to evaluate a structure. In this paper, we apply various classification algorithms like J48, Naive Bayes and many other classifiers available, to the dataset to check on the accuracy of the prediction determined by all of these classification algorithms and ar-rive at the conclusion of the best possible classifier to say whether a structure is damaged or not.  


2021 ◽  
Author(s):  
Floe Foxon

Ammonoid identification is crucial to biostratigraphy, systematic palaeontology, and evolutionary biology, but may prove difficult when shell features and sutures are poorly preserved. This necessitates novel approaches to ammonoid taxonomy. This study aimed to taxonomize ammonoids by their conch geometry using supervised and unsupervised machine learning algorithms. Ammonoid measurement data (conch diameter, whorl height, whorl width, and umbilical width) were taken from the Paleobiology Database (PBDB). 11 species with ≥50 specimens each were identified providing N=781 total unique specimens. Naive Bayes, Decision Tree, Random Forest, Gradient Boosting, K-Nearest Neighbours, and Support Vector Machine classifiers were applied to the PBDB data with a 5x5 nested cross-validation approach to obtain unbiased generalization performance estimates across a grid search of algorithm parameters. All supervised classifiers achieved ≥70% accuracy in identifying ammonoid species, with Naive Bayes demonstrating the least over-fitting. The unsupervised clustering algorithms K-Means, DBSCAN, OPTICS, Mean Shift, and Affinity Propagation achieved Normalized Mutual Information scores of ≥0.6, with the centroid-based methods having most success. This presents a reasonably-accurate proof-of-concept approach to ammonoid classification which may assist identification in cases where more traditional methods are not feasible.


2019 ◽  
Vol 16 (9) ◽  
pp. 3840-3848
Author(s):  
Neeraj Kumar ◽  
Jatinder Manhas ◽  
Vinod Sharma

Advancement in technology has helped people to live a long and better life. But the increased life expectancy has also elevated the risk of age related disorders, especially the neurodegenerative disorders. Alzheimer’s is one such neurodegenerative disorder, which is also the leading contributor towards dementia in elderly people. Despite of extensive research in this field, scientists have failed to find a cure for the disease till date. This makes early diagnosis of Alzheimer’s very crucial so as to delay its progression and improve the condition of the patient. Various techniques are being employed for diagnosing Alzheimer’s which include neuropsychological tests, medical imaging, blood based biomarkers, etc. Apart from this, various machine learning algorithms have been employed so far to diagnose Alzheimer’s in its early stages. In the current research, authors compared the performance of various machine learning techniques i.e., Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Naïve Bayes (NB), Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF) and Multi Layer Perceptron (MLP) on Alzheimer’s dataset. This paper experimentally demonstrated that normalization exhibits a predominant role in enhancing the efficiency of some machine learning algorithms. Therefore it becomes imperative to choose the algorithms as per the available data. In this paper, the efficiency of the given machine learning methods was compared in terms of accuracy and f1-score. Naïve Bayes gave a better overall performance for both accuracy and f1-score and it also remained unaffected with the normalization of data along with LDA, DT and RF. Whereas KNN, SVM and MLP showed a drastic (17% to 86%) improvement in the performance when they are given normalized data as compared to un-normalized data from Alzheimer’s dataset.


Author(s):  
Harshal Surve ◽  
Aditya Mestry

Sarcasm is the use of words usually used to indirectly either mock or annoy someone, or for humorous purposes. One of the difficult modes of communication for machines to identify is sarcasm. People often use sarcasm in their daily communication to indirectly annoy people which makes it very important to identify the sentence meaning. There are various machine learning algorithms for sarcasm detection such as Naïve Bayes (NB), Support Vector Machine (SVM), Logistics Regression (LR), Decision Trees (DT).All these algorithm can be used for Sarcasm Detection. The main goal of this paper is to provide various machine learning algorithms for sarcasm detection.


Author(s):  
Annie Syrien ◽  
Hanumanthappa M ◽  
Ravi Kumar K

The phenomenal development of the World Wide Web has resulted in enormous social networking sites producing tremendous data on web 2.0. Social networking sites have widened to a higher degree of use, in which any field of information can be sort by researchers. Data obtained from social media has strategized from many new machine learning algorithms and natural language processing. The data is unstructured; mining the data leads to finding important sentiments about various entities via appropriate classification techniques. In this paper, tweets’ opinions are analyzed through machine learning algorithms such as naive Bayes and support vector machines using R programming; results are computed and compared. The SVM model manifests the higher precision, and naïve Bayes provides higher accuracy for sentiment analysis on the Bengaluru traffic data.


Author(s):  
C. Karthikeyan , Et. al.

Various reasons are there in failures of Intergovernmental Panel on Climate Change (IPCC) simulation model for prediction of climate change. For the better understanding of IPCC model’s failures by researchers, an improvement is qualitative and quantitative analysis is required and to be implemented. We come across a continuous crashes in simulation of Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4), while measuring the impact of ocean model parameter uncertainties on weather simulations, during the period of uncertainty quantification (UQ) ensemble. This manuscript analyse the different machine learning algorithms, such as, Random forest, Linear Regression, k-means and naïve-bayes algorithms. From machine learning, a quality classifier called support vector machine (SVM) classification is used to predict and quantify the failures probability as a function of the values of POP2 parameters. Apart from quantification and prediction, this method performs a better understanding in simulation crashes in other complex geo-scientific models.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


Sign in / Sign up

Export Citation Format

Share Document