scholarly journals An Accelerating Iterative Learning Control Based on an Adjustable Learning Interval

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Dongqi Ma ◽  
Hui Lin

An iterative learning control algorithm with an adjustable interval is proposed for nonlinear systems to accelerate the convergence rate of iterative learning control. Forλ-norm, the monotonic convergence of ILC was analyzed, and the corresponding convergence conditions were obtained. The results showed that the convergence rate was mainly determined by the controlled object, the control law gain, the correction factor, and the iteration interval size and that the control law gain was corrected in real time in the modified interval and the modified interval shortened as the number of iterations increased, further accelerating the convergence. The numerical simulation shows the effectiveness of the proposed method.

2019 ◽  
Vol 292 ◽  
pp. 01010
Author(s):  
Mihailo Lazarević ◽  
Nikola Živković ◽  
Darko Radojević

The paper designs an appropriate iterative learning control (ILC) algorithm based on the trajectory characteristics of upper exosk el eton robotic system. The procedure of mathematical modelling of an exoskeleton system for rehabilitation is given and synthesis of a control law with two loops. First (inner) loop represents exact linearization of a given system, and the second (outer) loop is synthesis of a iterative learning control law which consists of two loops, open and closed loop. In open loop ILC sgnPDD2 is applied, while in feedback classical PD control law is used. Finally, a simulation example is presented to illustrate the feasibility and effectiveness of the proposed advanced open-closed iterative learning control scheme.


2014 ◽  
Vol 1048 ◽  
pp. 537-540
Author(s):  
Yin Jun Zhang

When we use power line as data carrier, due to the complexity of the PLC network environment, data packet loss frequently, so the paper deal with the iterative learning control for a class of nonlinear systems with measurement dropouts in the PLC, and studies the P-type iterative learning control algorithm convergence issues, the data packet loss is described as a stochastic Bernoulli process, on this basis we given convergence conditions for the P-type iterative learning control algorithm. The theoretically analysis is supported by the simulation of a numerical example; the convergence of ILC can be guaranteed when some output measurements are missing.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hongbin Wang ◽  
Jian Dong ◽  
Yueling Wang

A novel iterative learning control (ILC) algorithm is proposed to produce output curves that pass close to the desired trajectory. The key advantage of the proposed algorithm is introducing forgetting factor, which is a function of the number of iterations. Due to the forgetting factor characteristic of ILC, the proposed scheme not only stabilizes the nonlinear system with uncertainties but also weakens interference on the tracking desired trajectory. Simulation examples are included to demonstrate feasibility and effectiveness of the proposed algorithm.


Author(s):  
Zimian Lan

In this paper, we propose a new iterative learning control algorithm for sensor faults in nonlinear systems. The algorithm does not depend on the initial value of the system and is combined with the open-loop D-type iterative learning law. We design a period that shortens as the number of iterations increases. During this period, the controller corrects the state deviation, so that the system tracking error converges to the boundary unrelated to the initial state error, which is determined only by the system’s uncertainty and interference. Furthermore, based on the λ norm theory, the appropriate control gain is selected to suppress the tracking error caused by the sensor fault, and the uniform convergence of the control algorithm and the boundedness of the error are proved. The simulation results of the speed control of the injection molding machine system verify the effectiveness of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document