scholarly journals Contrast-Enhanced Magnetic Resonance Cholangiography: Practical Tips and Clinical Indications for Biliary Disease Management

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Stefano Palmucci ◽  
Federica Roccasalva ◽  
Marina Piccoli ◽  
Giovanni Fuccio Sanzà ◽  
Pietro Valerio Foti ◽  
...  

Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP—based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.

Dysphagia ◽  
2006 ◽  
Vol 21 (3) ◽  
pp. 156-162 ◽  
Author(s):  
Dana M. Hartl ◽  
Frédéric Kolb ◽  
Evelyne Bretagne ◽  
Patrick Marandas ◽  
Robert Sigal

2020 ◽  
Vol 10 (1) ◽  
pp. 68-73
Author(s):  
Kenji Kutara ◽  
Teppei Kanda ◽  
Noritaka Maeta ◽  
Yohei Mochizuki ◽  
Fumiko Ono ◽  
...  

Background: In humans, visualization of the thoracic duct by magnetic resonance imaging (MRI) has been attempted, and recent advances have enabled clinicians to visualize the thoracic duct configuration in a less invasive manner. Moreover, MRI does not require contrast media, and it enables visualization of morphological details of the thoracic structures. In veterinary practice, the thoracic duct has not been visualized three dimensionally in MRI.Aim: This study aimed to assess the performance of our magnetic resonance thoracic ductography (MRTD) technique to visualize the thoracic duct and the surrounding 3D anatomical structures by combining MRTD and vascular contrastenhanced thoracic computed tomography (CT) images in dogs.Methods: Five adult male beagle dogs (11.4–12.8 kg) were included in this study. Sagittal and transverse T2-weighted images were scanned in MRI. Scanning in MRTD used a single-shot fast spin echo sequence with a respiratory gate. CT was performed after the intravenous injection of contrast medium. All MRTD and CT images were merged using a workstation.Results: The thoracic ducts were identified in MRTD images of all dogs, and the surrounding anatomical structures were located with the aid of contrast-enhanced thoracic CT. In all dogs, the thoracic ducts coursed along the rightdorsal side of the aorta, cranially from the L2 level. Thereafter, these bent to the left side at the aortic arch and curved at the left external jugular vein angle. A comparison of the number of thoracic ducts at each vertebra between transverse T2WI and MRTD did not reveal any significant differences for all vertebrae.Conclusion: The results from our study suggest that MRTD using the single-shot fast spin echo sequence could be a useful tool for visualization of the thoracic duct. Furthermore, the image merged from MRTD and vascular-enhanced images provided detailed anatomical annotation of the thorax. The MRTD protocol described in this study is safe and easily adaptable, without the need for contrast medium injection into the lymph system. In addition, the images fused from MRTD and vascular contrast-enhanced CT image of the thorax could provide detailed anatomical annotations for preoperative planning. Keywords: Computed tomography, Dog, Magnetic resonance imaging, Thoracic duct, Thoracic ductography.


1998 ◽  
Vol 119 (4) ◽  
pp. 364-369 ◽  
Author(s):  
Robert L. Daniels ◽  
Clough Shelton ◽  
H. Ric Harnsberger

The financial burden for the evaluation of patients for acoustic neuroma in an otolaryngology practice is substantial. Patients with sudden sensorineural hearing loss represent a portion of that population seen with unilateral, asymmetric auditory symptoms who require investigation for acoustic neuroma. For these patients, gadolinium-enhanced magnetic resonance imaging is the diagnostic gold standard. Auditory brain stem response testing has been used in the past as a screening test for acoustic neuroma, but its apparent sensitivity has fallen as the ability to image smaller acoustic neuromas has improved. Fast spin echo magnetic resonance imaging techniques without gadolinium have been shown to be as effective in the detection of acoustic neuroma as contrast-enhanced magnetic resonance imaging. Limited nonenhanced fast spin echo magnetic resonance imaging now provides an inexpensive alternative for high-resolution imaging of the internal auditory canal and cerebellopontine angle. Fast spin echo magnetic resonance imaging can now be done at a cost approximating auditory brain stem response testing while providing the anatomic information of contrast-enhanced magnetic resonance imaging. Cost analysis was done in the cases of 58 patients with sudden sensorineural hearing loss by comparing the costs for routine workup and screening of acoustic neuroma with the cost of fast spin echo magnetic resonance imaging with the use of screening protocols based on literature review. The potential cost savings of evaluating patients with sudden sensorineural hearing loss with fast spin echo magnetic resonance imaging for acoustic neuroma was substantial, with a 54% reduction in screening costs. In an era of medical economic scrutiny, fast spin echo magnetic resonance imaging has become the most cost-effective method to screen suspected cases of acoustic tumors at our institution by improving existing technology while reducing the cost of providing that technology and eliminating charges for impedance audiometry, auditory brain stem response testing, and contrast-enhanced magnetic resonance imaging.


Sign in / Sign up

Export Citation Format

Share Document