scholarly journals Parameters Design for Logarithmic Quantizer Based on Zoom Strategy

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jingjing Yan

This paper is concerned with the problem of designing suitable parameters for logarithmic quantizer such that the closed-loop system is asymptotic convergent. Based on zoom strategy, we propose two methods for quantizer parameters design, under which it ensures that the state of the closed-loop system can load in the invariant sets after some certain moments. Then we obtain that the quantizer is unsaturated, and thus the quantization errors are bounded under the time-varying logarithm quantization strategy. On that basis, we obtain that the closed-loop system is asymptotic convergent. A benchmark example is given to show the usefulness of the proposed methods, and the comparison results are illustrated.

Author(s):  
Nikolaos Bekiaris-Liberis ◽  
Miroslav Krstic

We consider nonlinear systems in the strict-feedback form with simultaneous time-varying input and state delays, for which we design a predictor-based feedback controller. Our design is based on time-varying, infinite-dimensional backstepping transformations that we introduce, to convert the system to a globally asymptotically stable system. The solutions of the closed-loop system in the transformed variables can be found explicitly, which allows us to establish its global asymptotic stability. Based on the invertibility of the backstepping transformation, we prove global asymptotic stability of the closed-loop system in the original variables. Our design is illustrated by a numerical example.


1967 ◽  
Vol 89 (2) ◽  
pp. 379-383 ◽  
Author(s):  
Donald M. Wiberg

The optimum feedback control of controllable linear distributed stationary systems is discussed. A linear closed-loop system is assured by restricting the criterion to be the integral of quadratics in the state and control. Feedback is obtained by expansion of the linear closed-loop equation in terms of uncoupled modes. By incorporating symbolic functions into the formulation, one can treat boundary condition control and point observable systems that are null-delta controllable.


2019 ◽  
Vol 37 (3) ◽  
pp. 918-934
Author(s):  
Jing Bai ◽  
Ying Wang ◽  
Li-Ying Zhao

Abstract This paper is concerned with the discrete event-triggered dynamic output-feedback ${H}_{\infty }$ control problem for the uncertain networked control system, where the time-varying sampling, network-induced delay and packet losses are taken into account simultaneously. The random packet losses are described via the Bernoulli distribution. And then, the closed-loop system is modelled as an augmented time-delay system with interval time-varying delay. By using the Lyapunov stability theory and the augmented state space method, the sufficient conditions for the asymptotic stability of the closed-loop system are proposed in the form of linear matrix inequalities. At the same time, the design method of the ${H}_{\infty }$ controller is created. Finally, a numerical example is employed to illustrate the effectiveness of the proposed method.


Author(s):  
Taide Liu ◽  
Feng Wang ◽  
Wanchun Lu ◽  
Xuhuan Wang

The problem of Mittag–Leffler stabilization (MLS) is studied for a class of nonlinear non-integer order systems. The stabilizer is constructed by using the Lyapunov function and backstepping algorithm. The continuous controller is designed to ensure that the state of the nonlinear fractional-order closed-loop system converges to the equilibrium. Two simulation examples are given to illustrate the effectiveness of the method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Walid Hamdi ◽  
Wissal Bey ◽  
Naceur Benhadj Braiek

An enhanced method able to perform accurate stability of constrained uncertain systems is presented. The main objective of this method is to compute a sequence of feedback control laws which stabilizes the closed-loop system. The proposed approach is based on robust model predictive control (RMPC) and enhanced maximized sets algorithm (EMSA), which are applied to improve the performance of the closed-loop system and achieve less conservative results. In fact, the proposed approach is split into two parts. The first is a method of enhanced maximized ellipsoidal invariant sets (EMES) based on a semidefinite programming problem. The second is an enhanced maximized polyhedral set (EMPS) which consists of appending new vertices to their convex hull to minimize the distance between each new vertex and the polyhedral set vertices to ensure state constraints. Simulation results on two examples, an uncertain nonisothermal CSTR and an angular positioning system, demonstrate the effectiveness of the proposed methodology when compared to other works related to a similar subject. According to the performance evaluation, we recorded higher feedback gain provided by smallest maximized invariant sets compared to recently studied methods, which shows the best region of stability. Therefore, the proposed algorithm can achieve less conservative results.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Ziyang Meng ◽  
Zheng You ◽  
Guanhua Li ◽  
Chunshi Fan

Cooperative attitude regulation and tracking problems are discussed in the presence of multiple time-varying communication delays and dynamically changing topologies. In the case of cooperative attitude regulation, we propose conditions to guarantee the stability of the closed-loop system when there exist multiple time-varying communication delays. In the case of cooperative attitude tracking, the result of uniformly ultimate boundedness of the closed-loop system is obtained when there exist both multiple time-varying communication delays and dynamically changing topologies. Simulation results are presented to validate the effectiveness of these conclusions.


Author(s):  
Keisuke Yagi ◽  
Hiroaki Muto ◽  
Yoshikazu Mori

Abstract The paper proposes the digital redesign technique called plant-input-mapping (PIM) method for a feedback system described in the state-space form. The PIM method, which was originally presented in the transfer function form, focuses on the plant input signal via the plant input transfer function and discretizes it so as to satisfy the control zero principle in the resulting discrete-time closed-loop system, which leads to guaranteeing the closed-loop stability for any non-pathological sampling interval. In accordance with this approach, the proposed PIM method focuses on the control zeros included in the plant input signal. The paper proves that the matched-pole-zero discrete-time model of the plant input state-equation satisfies the control zero principle with the step-invariant model of the plant. Then, when the matched-pole-zero model is set as the target of model matching, the parameters of the state-space PIM controller employing the observer-based dynamic state-feedback can systematically be determined from the underlying continuous-time closed-loop system with guaranteed stability. This discretization process can immediately be applied to a state-feedback system and a class of multi-input multi-output systems without any modification, which cannot be discretized by the conventional PIM methods. The discretization performance of the proposed PIM method is evaluated through illustrative examples with comparable digital redesign methods, which reveal that the proposed method performs a good reproduction of the characteristics of the underlying closed-loop system.


Author(s):  
M M Arefi ◽  
M R Jahed-Motlagh

In this paper, an adaptive robust stabilization algorithm is presented for a class of non-linear systems with mismatched uncertainties. In this regard, a new controller based on the Lyapunov theory is proposed in order to overcome the problem of stabilizing non-linear time-varying systems with mismatched uncertainties. This method is such that the stability of the closed-loop system is guaranteed in the absence of the triangularity assumption. The proposed approach leads to asymptotic convergence of the states of the closed-loop system to zero for unknown but bounded uncertainties. Subsequently, this method is modified so that all the signals in the closed-loop system are uniformly ultimately bounded. Eventually, numerical simulations support the effectiveness of the given algorithm.


Author(s):  
Hadi Azmi ◽  
Alireza Yazdizadeh

Abstract In this paper, two novel adaptive control strategies are presented based on the linear matrix inequality for nonlinear Lipschitz systems. The proposed approaches are developed by creatively using Krasovskii stability theory to compensate parametric uncertainty, unknown time-varying internal delay, and bounded matched or mismatched disturbance effects in closed-loop system of nonlinear systems. The online adaptive tuning controllers are designed such that reference input tracking and asymptotic stability of the closed-loop system are guaranteed. A novel structural algorithm is developed based on linear matrix inequality (LMI) and boundaries of the system delay or uncertainty. The capabilities of the proposed tracking and regulation methods are verified by simulation of three physical uncertain nonlinear system with real practical parameters subject to internal or state time delay and disturbance.


2016 ◽  
Vol 2016 ◽  
pp. 1-24 ◽  
Author(s):  
Nurul Dayana Salim ◽  
Dafizal Derawi ◽  
Hairi Zamzuri ◽  
Kenzo Nonami ◽  
Mohd Azizi Abdul Rahman

This paper proposes a robust optimal attitude control design for multiple-input, multiple-output (MIMO) uncertain hexarotor micro aerial vehicles (MAVs) in the presence of parametric uncertainties, external time-varying disturbances, nonlinear dynamics, and coupling. The parametric uncertainties, external time-varying disturbances, nonlinear dynamics, and coupling are treated as the total disturbance in the proposed design. The proposed controller is achieved in two simple steps. First, an optimal linear-quadratic regulator (LQR) controller is designed to guarantee that the nominal closed-loop system is asymptotically stable without considering the total disturbance. After that, a disturbance observer is integrated into the closed-loop system to estimate the total disturbance acting on the system. The total disturbance is compensated by a compensation input based on the estimated total disturbance. Robust properties analysis is given to prove that the state is ultimately bounded in specified boundaries. Simulation results illustrate the robustness of the disturbance observer-based optimal attitude control design for hovering and aggressive flight missions in the presence of the total disturbance.


Sign in / Sign up

Export Citation Format

Share Document