scholarly journals Investigate the Effect of Thawing Process on the Self-Assembly of Silk Protein for Tissue Applications

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Hiep Thi Nguyen ◽  
Hien Thu Luong ◽  
Hai Dai Nguyen ◽  
Hien Anh Tran ◽  
Khon Chan Huynh ◽  
...  

Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of −80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of −80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.

2017 ◽  
Vol 21 (12) ◽  
pp. 782-789 ◽  
Author(s):  
M. Ángel Revuelta-Maza ◽  
Ettore Fazio ◽  
Gema de la Torre ◽  
Tomás Torres

Organic building blocks containing amines and aldehydes can be used for the preparation of complex metallo-organic structures, such as M[Formula: see text]L[Formula: see text] triple helicates or face-capped M[Formula: see text]L[Formula: see text] tetrahedral cages, through the formation of both dynamic covalent and coordinative linkages during the self-assembly process. Herein we describe how the subcomponent self-assembly method can be succesfully applied over a triamine-functionalized subphthalocyanine (SubPc) ligand to build metallo-supramolecular helicates. Two isomeric SubPcs (C[Formula: see text]-SubPc1 and C[Formula: see text]-SubPc1) have been prepared from the corresponding C[Formula: see text]-SubPcI[Formula: see text] and C[Formula: see text]-SubPcI[Formula: see text] precursors under optimized Suzuki conditions. We selected the tritopic C[Formula: see text]-SubPc1 derivative as ligand for the subcomponent self-assembly experiments, which involved the reaction with 2-formylpyridine and different Fe(II) salts. The self-assembly process was mainly studied by mass spectrometry (ESI direct injection techniques), and in all the conditions applied, we could observe the formation of helicate-type Fe[Formula: see text]SubPc[Formula: see text] structures and/or Fe[Formula: see text]SubPc[Formula: see text] species, which can be considered as open precursors of Fe[Formula: see text]SubPc[Formula: see text] tetrahedral cages.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


MRS Advances ◽  
2020 ◽  
Vol 5 (42) ◽  
pp. 2147-2155
Author(s):  
Sudi Chen ◽  
Xitong Ren ◽  
Shufang Tian ◽  
Jiajie Sun ◽  
Feng Bai

AbstractThe self-assembly of optically active building blocks into functional nanocrystals as high-activity photocatalysts is a key in the field of photocatalysis. Cobalt porphyrin with abundant catalytic properties is extensively studied in photocatalytic water oxidation and CO2 reduction. Here, we present the fabrication of cobalt porphyrin nanocrystals through a surfactant-assisted interfacial self-assembly process using Co-tetra(4-pyridyl) porphyrin as building block. The self-assembly process relies on the combined noncovalent interactions such as π-π stacking and axial Co-N coordination between individual porphyrin molecules within surfactant micelles. Tuning different reaction conditions (temperature, the ratio of co-solvent DMF) and types of surfactant, various nanocrystals with well-defined 1D to 3D morphologies such as nanowires, nanorods and nano hexagonal prism were obtained. Due to the ordered accumulation of molecules, the nanocrystals exhibit the properties of the enhanced capability of visible light capture and can conduce to improve the transport and separation efficiency of the photogenerated carriers, which is important for photocatalysis. Further studies of photocatalytic CO2 reduction are being performed to address the relationship between the size and shape of the nanocrystals with the photocatalytic activity.


2013 ◽  
Vol 66 (1) ◽  
pp. 9 ◽  
Author(s):  
Yi Liu ◽  
Zhan-Ting Li

The chemistry of imine bond formation from simple aldehyde and amine precursors is among the most powerful dynamic covalent chemistries employed for the construction of discrete molecular objects and extended molecular frameworks. The reversible nature of the C=N bond confers error-checking and proof-reading capabilities in the self-assembly process within a multi-component reaction system. This review highlights recent progress in the self-assembly of complex organic molecular architectures that are enabled by dynamic imine chemistry, including molecular containers with defined geometry and size, mechanically interlocked molecules, and extended frameworks and polymers, from building blocks with preprogrammed steric and electronic information. The functional aspects associated with the nanometer-scale features not only place these dynamically constructed nanostructures at the frontier of materials sciences, but also bring unprecedented opportunities for the discovery of new functional materials.


2022 ◽  
Author(s):  
Jamie M. Cameron ◽  
Geoffroy Guillemot ◽  
Theodor Galambos ◽  
Sharad S. Amin ◽  
Elizabeth Hampson ◽  
...  

Organic–inorganic hybrid polyoxometalates are versatile building blocks for the self-assembly of functional supramolecular materials.


2021 ◽  
Vol 22 (17) ◽  
pp. 9634
Author(s):  
Moran Aviv ◽  
Dana Cohen-Gerassi ◽  
Asuka A. Orr ◽  
Rajkumar Misra ◽  
Zohar A. Arnon ◽  
...  

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling. A minimal alteration of the chemical environment could cause a significant impact. In this context, we report the effects of modifying the position of a single atom on the properties and kinetics of the self-assembly process. A combination of experimental and computational methods, used to investigate double-fluorinated Fmoc-Phe derivatives, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe, reveals the unique effects of modifying the position of a single fluorine on the self-assembly process, and the physical properties of the product. The presence of significant physical and morphological differences between the two derivatives was verified by molecular-dynamics simulations. Analysis of the spontaneous phase-transition of both building blocks, as well as crystal X-ray diffraction to determine the molecular structure of Fmoc-3,4F-Phe, are in good agreement with known changes in the Phe fluorination pattern and highlight the effect of a single atom position on the self-assembly process. These findings prove that fluorination is an effective strategy to influence supramolecular organization on the nanoscale. Moreover, we believe that a deep understanding of the self-assembly process may provide fundamental insights that will facilitate the development of optimal amino-acid-based low-molecular-weight hydrogelators for a wide range of applications.


2012 ◽  
Vol 51 (14) ◽  
pp. 7445-7447 ◽  
Author(s):  
Yurii S. Moroz ◽  
Serhiy Demeshko ◽  
Matti Haukka ◽  
Andriy Mokhir ◽  
Utpal Mitra ◽  
...  

1995 ◽  
Vol 171 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Hiromori Tsutsumi ◽  
Shozo Furumoto ◽  
Masayuki Morita ◽  
Yoshiharu Matsuda

Sign in / Sign up

Export Citation Format

Share Document