scholarly journals Enhanced Orthogonal Matching Pursuit Algorithm and Its Application in Mechanical Equipment Fault Diagnosis

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yong Lv ◽  
Jie Luo ◽  
Cancan Yi

The vibration signal measured from the mechanical equipment is associated with the operation of key structure, such as the rolling bearing and gear. The effective signal processing method for early weak fault has attracted much attention and it is of vital importance in mechanical fault monitoring and diagnosis. The recently proposed atomic sparse decomposition algorithm is performed around overcomplete dictionary instead of the traditional signal analysis method using orthogonal basis operator. This algorithm has been proved to be effective in extracting useful components from complex signal by reducing influence of background noises. In this paper, an improved linear frequency-modulated (Ilfm) function as an atom is employed in the proposed enhanced orthogonal matching pursuit (EOMP) algorithm. Then, quantum genetic algorithm (QGA) with the OMP algorithm is integrated since the QGA can quickly obtain the global optimal solution of multiple parameters for rapidly and accurately extracting fault characteristic information from the vibration signal. The proposed method in this paper is superior to the traditional OMP algorithm in terms of accuracy and reducing the computation time through analyzing the simulation data and real world data. The experimental results based on the application of gear and bearing fault diagnosis indicate that it is more effective than traditional method in extracting fault characteristic information.

2019 ◽  
Vol 9 (8) ◽  
pp. 1696 ◽  
Author(s):  
Wang ◽  
Lee

Fault characteristic extraction is attracting a great deal of attention from researchers for the fault diagnosis of rotating machinery. Generally, when a gearbox is damaged, accurate identification of the side-band features can be used to detect the condition of the machinery equipment to reduce financial losses. However, the side-band feature of damaged gears that are constantly disturbed by strong jamming is embedded in the background noise. In this paper, a hybrid signal-processing method is proposed based on a spectral subtraction (SS) denoising algorithm combined with an empirical wavelet transform (EWT) to extract the side-band feature of gear faults. Firstly, SS is used to estimate the real-time noise information, which is used to enhance the fault signal of the helical gearbox from a vibration signal with strong noise disturbance. The empirical wavelet transform can extract amplitude-modulated/frequency-modulated (AM-FM) components of a signal using different filter bands that are designed in accordance with the signal properties. The fault signal is obtained by building a flexible gear for a helical gearbox with ADAMS software. The experiment shows the feasibility and availability of the multi-body dynamics model. The spectral subtraction-based adaptive empirical wavelet transform (SS-AEWT) method was applied to estimate the gear side-band feature for different tooth breakages and the strong background noise. The verification results show that the proposed method gives a clearer indication of gear fault characteristics with different tooth breakages and the different signal-noise ratio (SNR) than the conventional EMD and LMD methods. Finally, the fault characteristic frequency of a damaged gear suggests that the proposed SS-AEWT method can accurately and reliably diagnose faults of a gearbox.


2019 ◽  
Author(s):  
Carlos A Loza

Sparse coding aims to find a parsimonious representation of an example given an observation matrix or dictionary. In this regard, Orthogonal Matching Pursuit (OMP) provides an intuitive, simple and fast approximation of the optimal solution. However, its main building block is anchored on the minimization of the Mean Squared Error cost function (MSE). This approach is only optimal if the errors are distributed according to a Gaussian distribution without samples that strongly deviate from the main mode, i.e. outliers. If such assumption is violated, the sparse code will likely be biased and performance will degrade accordingly. In this paper, we introduce five robust variants of OMP (RobOMP) fully based on the theory of M-Estimators under a linear model. The proposed framework exploits efficient Iteratively Reweighted Least Squares (IRLS) techniques to mitigate the effect of outliers and emphasize the samples corresponding to the main mode of the data. This is done adaptively via a learned weight vector that models the distribution of the data in a robust manner. Experiments on synthetic data under several noise distributions and image recognition under different combinations of occlusion and missing pixels thoroughly detail the superiority of RobOMP over MSE-based approaches and similar robust alternatives. We also introduce a denoising framework based on robust, sparse and redundant representations that open the door to potential further applications of the proposed techniques. The five different variants of RobOMP do not require parameter tuning from the user and, hence, constitute principled alternatives to OMP.


2020 ◽  
Vol 10 (18) ◽  
pp. 6359 ◽  
Author(s):  
Shuangjie Liu ◽  
Jiaqi Xie ◽  
Changqing Shen ◽  
Xiaofeng Shang ◽  
Dong Wang ◽  
...  

Mechanical equipment fault detection is critical in industrial applications. Based on vibration signal processing and analysis, the traditional fault diagnosis method relies on rich professional knowledge and artificial experience. Achieving accurate feature extraction and fault diagnosis is difficult using such an approach. To learn the characteristics of features from data automatically, a deep learning method is used. A qualitative and quantitative method for rolling bearing faults diagnosis based on an improved convolutional deep belief network (CDBN) is proposed in this study. First, the original vibration signal is converted to the frequency signal with the fast Fourier transform to improve shallow inputs. Second, the Adam optimizer is introduced to accelerate model training and convergence speed. Finally, the model structure is optimized. A multi-layer feature fusion learning structure is put forward wherein the characterization capabilities of each layer can be fully used to improve the generalization ability of the model. In the experimental verification, a laboratory self-made bearing vibration signal dataset was used. The dataset included healthy bearings, nine single faults of different types and sizes, and three different types of composite fault signals. The results of load 0 kN and 1 kN both indicate that the proposed model has better diagnostic accuracy, with an average of 98.15% and 96.15%, compared with the traditional stacked autoencoder, artificial neural network, deep belief network, and standard CDBN. With improved diagnostic accuracy, the proposed model realizes reliable and effective qualitative and quantitative diagnosis of bearing faults.


2012 ◽  
Vol 190-191 ◽  
pp. 993-997
Author(s):  
Li Jie Sun ◽  
Li Zhang ◽  
Yong Bo Yang ◽  
Da Bo Zhang ◽  
Li Chun Wu

Mechanical equipment fault diagnosis occupies an important position in the industrial production, and feature extraction plays an important role in fault diagnosis. This paper analyzes various methods of feature extraction in rolling bearing fault diagnosis and classifies them into two big categories, which are methods of depending on empirical rules and experimental trials and using objective methods for screening. The former includes five methods: frequency as the characteristic parameters, multi-sensor information fusion method, rough set attribute reduction method, "zoom" method and vibration signal as the characteristic parameters. The latter includes two methods: sensitivity extraction and data mining methods to select attributes. Currently, selection methods of feature parameters depend heavily on empirical rules and experimental trials, thus extraction results are be subjected to restriction from subjective level, feature extraction in the future will develop toward objective screening direction.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Weigang Wen ◽  
Robert X. Gao ◽  
Weidong Cheng

The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by wavelet enveloping. The envelope energy is adopted as an indicator to select meshing frequency band. Manifold learning is utilized to reduce the effect of noise within meshing frequency band. The fault characteristic frequency of the planetary gear is shown by spectrogram. The planetary gearbox model and test rig are established and experiments with planet gear faults are conducted for verification. All results of experiment analysis demonstrate its effectiveness and reliability.


2019 ◽  
Author(s):  
Carlos A Loza

Sparse coding aims to find a parsimonious representation of an example given an observation matrix or dictionary. In this regard, Orthogonal Matching Pursuit (OMP) provides an intuitive, simple and fast approximation of the optimal solution. However, its main building block is anchored on the minimization of the Mean Squared Error cost function (MSE). This approach is only optimal if the errors are distributed according to a Gaussian distribution without samples that strongly deviate from the main mode, i.e. outliers. If such assumption is violated, the sparse code will likely be biased and performance will degrade accordingly. In this paper, we introduce five robust variants of OMP (RobOMP) fully based on the theory of M-Estimators under a linear model. The proposed framework exploits efficient Iteratively Reweighted Least Squares (IRLS) techniques to mitigate the effect of outliers and emphasize the samples corresponding to the main mode of the data. This is done adaptively via a learned weight vector that models the distribution of the data in a robust manner. Experiments on synthetic data under several noise distributions and image recognition under different combinations of occlusion and missing pixels thoroughly detail the superiority of RobOMP over MSE-based approaches and similar robust alternatives. We also introduce a denoising framework based on robust, sparse and redundant representations that open the door to potential further applications of the proposed techniques. The five different variants of RobOMP do not require parameter tuning from the user and, hence, constitute principled alternatives to OMP.


2013 ◽  
Vol 805-806 ◽  
pp. 303-311
Author(s):  
Ning Jia ◽  
Tian Xia Zhang ◽  
Yuan Sheng Li ◽  
Tao Zhang

The structure of the wind turbine generator system is complex and it is difficult to identify the fault signals because of fault frequency aliasing on the vibration characteristics. The wind turbine fault diagnosis method is raised on single component shock to solve the vibration signal feature extraction during the wind turbines operating. Based on the principle of Hilbert envelope demodulation, this envelope demodulation method is presented for the single IMF component which contains shock fault characteristic frequency to solve the possible problem which fault Frequency is difficult to identify when the original signal is directly asked to envelope. This method has been applied and verified when a wind farm CSC-855W wind turbine vibration monitoring device was presented. The results show that compared with the traditional envelope demodulation method, by this method wind turbine fault characteristic can be more effectively and directly extracted and the accuracy of fault diagnosis can be improved. It is of great practical value.


Entropy ◽  
2017 ◽  
Vol 19 (8) ◽  
pp. 421 ◽  
Author(s):  
Qing Li ◽  
Steven Liang

The periodical transient impulses caused by localized faults are sensitive and important characteristic information for rotating machinery fault diagnosis. However, it is very difficult to accurately extract transient impulses at the incipient fault stage because the fault impulse features are rather weak and always corrupted by heavy background noise. In this paper, a new transient impulse extraction methodology is proposed based on impulse-step dictionary and re-weighted minimizing nonconvex penalty Lq regular (R-WMNPLq, q = 0.5) for the incipient fault diagnosis of rolling bearings. Prior to the sparse representation, the original vibration signal is preprocessed by the variational mode decomposition (VMD) technique. Due to the physical mechanism of periodic double impacts, including step-like and impulse-like impacts, an impulse-step impact dictionary atom could be designed to match the natural waveform structure of vibration signals. On the other hand, the traditional sparse reconstruction approaches such as orthogonal matching pursuit (OMP), L1-norm regularization treat all vibration signal values equally and thus ignore the fact that the vibration peak value may have more useful information about periodical transient impulses and should be preserved at a larger weight value. Therefore, penalty and smoothing parameters are introduced on the reconstructed model to guarantee the reasonable distribution consistence of peak vibration values. Lastly, the proposed technique is applied to accelerated lifetime testing of rolling bearings, where it achieves a more noticeable and higher diagnostic accuracy compared with OMP, L1-norm regularization and traditional spectral Kurtogram (SK) method.


Sign in / Sign up

Export Citation Format

Share Document