scholarly journals Catalytic Intermediate Crystal Structures of Cysteine Desulfurase from the Archaeon Thermococcus onnurineus NA1

Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Thien-Hoang Ho ◽  
Kim-Hung Huynh ◽  
Diem Quynh Nguyen ◽  
Hyunjae Park ◽  
Kyoungho Jung ◽  
...  

Thermococcus onnurineus NA1 is an anaerobic archaeon usually found in a deep-sea hydrothermal vent area, which can use elemental sulfur (S0) as a terminal electron acceptor for energy. Sulfur, essential to many biomolecules such as sulfur-containing amino acids and cofactors including iron-sulfur cluster, is usually mobilized from cysteine by the pyridoxal 5′-phosphate- (PLP-) dependent enzyme of cysteine desulfurase (CDS). We determined the crystal structures of CDS from Thermococcus onnurineus NA1 (ToCDS), which include native internal aldimine (NAT), gem-diamine (GD) with alanine, internal aldimine structure with existing alanine (IAA), and internal aldimine with persulfide-bound Cys356 (PSF) structures. The catalytic intermediate structures showed the dihedral angle rotation of Schiff-base linkage relative to the PLP pyridine ring. The ToCDS structures were compared with bacterial CDS structures, which will help us to understand the role and catalytic mechanism of ToCDS in the archaeon Thermococcus onnurineus NA1.

2008 ◽  
Vol 36 (6) ◽  
pp. 1112-1119 ◽  
Author(s):  
Sibali Bandyopadhyay ◽  
Kala Chandramouli ◽  
Michael K. Johnson

Iron–sulfur (Fe–S) clusters are present in more than 200 different types of enzymes or proteins and constitute one of the most ancient, ubiquitous and structurally diverse classes of biological prosthetic groups. Hence the process of Fe–S cluster biosynthesis is essential to almost all forms of life and is remarkably conserved in prokaryotic and eukaryotic organisms. Three distinct types of Fe–S cluster assembly machinery have been established in bacteria, termed the NIF, ISC and SUF systems, and, in each case, the overall mechanism involves cysteine desulfurase-mediated assembly of transient clusters on scaffold proteins and subsequent transfer of pre-formed clusters to apo proteins. A molecular level understanding of the complex processes of Fe–S cluster assembly and transfer is now beginning to emerge from the combination of in vivo and in vitro approaches. The present review highlights recent developments in understanding the mechanism of Fe–S cluster assembly and transfer involving the ubiquitous U-type scaffold proteins and the potential roles of accessory proteins such as Nfu proteins and monothiol glutaredoxins in the assembly, storage or transfer of Fe–S clusters.


2018 ◽  
Vol 29 (7) ◽  
pp. 776-785 ◽  
Author(s):  
Lena Böttinger ◽  
Christoph U. Mårtensson ◽  
Jiyao Song ◽  
Nicole Zufall ◽  
Nils Wiedemann ◽  
...  

Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity.


2020 ◽  
Vol 21 (1) ◽  
pp. 368
Author(s):  
Xiang Zeng ◽  
Xiaobo Zhang ◽  
Zongze Shao

The hyperthermo-piezophilic archaeon Palaeococcus pacificus DY20341T, isolated from East Pacific hydrothermal sediments, can utilize elemental sulfur as a terminal acceptor to simulate growth. To gain insight into sulfur metabolism, we performed a genomic and transcriptional analysis of Pa. pacificus DY20341T with/without elemental sulfur as an electron acceptor. In the 2001 protein-coding sequences of the genome, transcriptomic analysis showed that 108 genes increased (by up to 75.1 fold) and 336 genes decreased (by up to 13.9 fold) in the presence of elemental sulfur. Palaeococcus pacificus cultured with elemental sulfur promoted the following: the induction of membrane-bound hydrogenase (MBX), NADH:polysulfide oxidoreductase (NPSOR), NAD(P)H sulfur oxidoreductase (Nsr), sulfide dehydrogenase (SuDH), connected to the sulfur-reducing process, the upregulation of iron and nickel/cobalt transfer, iron–sulfur cluster-carrying proteins (NBP35), and some iron–sulfur cluster-containing proteins (SipA, SAM, CobQ, etc.). The accumulation of metal ions might further impact on regulators, e.g., SurR and TrmB. For growth in proteinous media without elemental sulfur, cells promoted flagelin, peptide/amino acids transporters, and maltose/sugar transporters to upregulate protein and starch/sugar utilization processes and riboflavin and thiamin biosynthesis. This indicates how strain DY20341T can adapt to different living conditions with/without elemental sulfur in the hydrothermal fields.


Microbiology ◽  
2003 ◽  
Vol 149 (12) ◽  
pp. 3519-3530 ◽  
Author(s):  
Michael J. LaGier ◽  
Jan Tachezy ◽  
Frantisek Stejskal ◽  
Katerina Kutisova ◽  
Janet S. Keithly

Several reports have indicated that the iron–sulfur cluster [Fe–S] assembly machinery in most eukaryotes is confined to the mitochondria and chloroplasts. The best-characterized and most highly conserved [Fe–S] assembly proteins are a pyridoxal-5′-phosphate-dependent cysteine desulfurase (IscS), and IscU, a protein functioning as a scaffold for the assembly of [Fe–S] prior to their incorporation into apoproteins. In this work, genes encoding IscS and IscU homologues have been isolated and characterized from the apicomplexan parasite Cryptosporidium parvum, an opportunistic pathogen in AIDS patients, for which no effective treatment is available. Primary sequence analysis (CpIscS and CpIscU) and phylogenetic studies (CpIscS) indicate that both genes are most closely related to mitochondrial homologues from other organisms. Moreover, the N-terminal signal sequences of CpIscS and CpIscU predicted in silico specifically target green fluorescent protein to the mitochondrial network of the yeast Saccharomyces cerevisiae. Overall, these findings suggest that the previously identified mitochondrial relict of C. parvum may have been retained by the parasite as an intracellular site for [Fe–S] assembly.


2013 ◽  
Vol 825 ◽  
pp. 198-201 ◽  
Author(s):  
Jian She Liu ◽  
Lin Qian ◽  
Chun Li Zheng

Iron-sulfur (Fe-S) proteins are ubiquitous and participate in multiple essential functions of life. However, little is currently known about the mechanisms of iron-sulfur biosynthesis and transfer in acidophilic microorganisms. In this study, the IscS, IscU and IscA proteins from Acidithiobacillus ferrooxidans were successfully expressed in Escherichia coli and purified by affinity chromatography. The IscS was a cysteine desulfurase which catalyzes desulfurization of L-cysteine and transfer sulfur for iron-sulfur cluster assembly. Purified IscU did not have an iron-sulfur cluster but could act as a scaffold protein to assemble the [2Fe-2S] cluster in vitro. The IscA was a [4Fe-4S] cluster binding protein, but it also acted as an iron binding protein. Further studies indicated that the iron sulfur clusters could be transferred from pre-assembled scaffold proteins to apo-form iron sulfur proteins, the reconstituted iron sulfur proteins could restore their physiological activities.


1997 ◽  
Vol 17 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Paul R. Gardner

O−2 produced by the autoxidation of respiratory chain electron carriers, and other cellular reductants, inactivates bacterial and mammalian iron-sulfur-containing (de)hydratases including the citric acid cycle enzyme aconitase. Release of the solvent-exposed iron atom and oxidation of the [4Fe-4S]2+ cluster accompanies loss of catalytic activity. Rapid reactivation is achieved by iron-sulfur cluster reduction and Fe2+ insertion. Inactivation-reactivation is a dynamic and cyclical process which modulates aconitase and (de)hydratase activities in Escherichia coli and mammalian cells. The balance of inactive and active aconitase provides a sensitive measure of the changes in steady-statO−2 levels occuring in living cells and mitochondria under stress conditions. Aconitases are also inactivated by other oxidants including O2, H2O2, NO., and ONOO− which are associated with inflammation, hyperoxia and other pathophysiological conditions. Loss of aconitase activity during oxidant stress may impair energy production, and the liberation of reactive iron may further enhance oxidative damage. Iron-sulfur center cycling may also serve adaptive functions by modulating gene expression or by signaling metabolic quiescence.


Sign in / Sign up

Export Citation Format

Share Document