scholarly journals Read Range Enhancement of a Sensing RFID Tag by Photovoltaic Panel

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
B. Molina-Farrugia ◽  
A. Rivadeneyra ◽  
J. Fernández-Salmerón ◽  
F. Martínez-Martí ◽  
J. Banqueri ◽  
...  

An RFID tag with energy harvesting and sensing capabilities is presented in this paper. This RFID tag is based on an integrated circuit (SL900A) that incorporates a sensor front-end interface capable of measuring voltages, currents, resistances, and capacitances. The aim of this work is to improve the communication distance from the reader to the tag using energy harvesting techniques. Once the energy source and harvester are chosen according to the environment of work, the conditioning circuit for energy management has to be appropriately designed with respect to the nature of the transductor. As a proof of concept, a photovoltaic panel is used in this work to collect the energy from the environment that is managed by a DC-DC converter and stored in a capacitor acting as battery. Such energy is used to support the power system of the tag, giving autonomy to the device and allowing data logging. In particular, the developed tag monitors the ambient temperature and the power voltage. It would be possible to add external sensors without changing the architecture. An increase in the read range of more than 200% is demonstrated. This feature is especially interesting in environments where the access could be difficult.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ran Sun ◽  
Budi Rahmadya ◽  
Fangyuan Kong ◽  
Shigeki Takeda

AbstractThis paper proposes a visual management scheme of medical things with a color-change radio frequency identification (RFID) tag. The color-change RFID tag employs a specific RFID tag integrated circuit (IC) and a laminated pH-indicating paper. The IC has energy harvesting and switched ground functions, which enable it to generate electricity to the laminated pH-indicating paper. This phenomenon causes electrolysis of NaCl solution absorbed in the laminated pH-indicating paper. Electrolysis generates alkaline matter to change the color of the pH-indicating paper. This paper gives a new and sensitive structure of the laminated pH-indicating paper. The proposed advanced color-change RFID tag with new laminated pH-indicating paper succeeds in changing its color noticeably at a 1 m distance using an RFID reader radiating 1 W radio waves. The color change was observed 3–5 s after starting radio wave irradiation. The results of this experiment also confirm that the changed color can be held for over 24 h. Furthermore, two demonstrations of the visual management system of medical things (patient clothes and sanitizers) are presented.


2010 ◽  
Vol E93-C (6) ◽  
pp. 785-795
Author(s):  
Sung-Jin KIM ◽  
Minchang CHO ◽  
SeongHwan CHO
Keyword(s):  
Rfid Tag ◽  

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Chester Sungchung Park ◽  
Sunwoo Kim ◽  
Jooho Wang ◽  
Sungkyung Park

A digital front-end decimation chain based on both Farrow interpolator for fractional sample-rate conversion and a digital mixer is proposed in order to comply with the long-term evolution standards in radio receivers with ten frequency modes. Design requirement specifications with adjacent channel selectivity, inband blockers, and narrowband blockers are all satisfied so that the proposed digital front-end is 3GPP-compliant. Furthermore, the proposed digital front-end addresses carrier aggregation in the standards via appropriate frequency translations. The digital front-end has a cascaded integrator comb filter prior to Farrow interpolator and also has a per-carrier carrier aggregation filter and channel selection filter following the digital mixer. A Farrow interpolator with an integrate-and-dump circuitry controlled by a condition signal is proposed and also a digital mixer with periodic reset to prevent phase error accumulation is proposed. From the standpoint of design methodology, three models are all developed for the overall digital front-end, namely, functional models, cycle-accurate models, and bit-accurate models. Performance is verified by means of the cycle-accurate model and subsequently, by means of a special C++ class, the bitwidths are minimized in a methodic manner for area minimization. For system-level performance verification, the orthogonal frequency division multiplexing receiver is also modeled. The critical path delay of each building block is analyzed and the spectral-domain view is obtained for each building block of the digital front-end circuitry. The proposed digital front-end circuitry is simulated, designed, and both synthesized in a 180 nm CMOS application-specific integrated circuit technology and implemented in the Xilinx XC6VLX550T field-programmable gate array (Xilinx, San Jose, CA, USA).


Author(s):  
Zu-Jia Lo ◽  
Bipasha Nath ◽  
Yuan-Chuan Wang ◽  
Yun-Jie Huang ◽  
Hui-Chun Huang ◽  
...  

1991 ◽  
Vol 37 (3) ◽  
pp. 585-591 ◽  
Author(s):  
A. Baschirotto ◽  
M. Cassis ◽  
P. Kirchlechner ◽  
F. Montecchi ◽  
G. Palmisano ◽  
...  
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 353
Author(s):  
Bin Zhang ◽  
Hongsheng Liu ◽  
Dezhi Li ◽  
Jinhui Liang ◽  
Jun Gao

Energy harvesting using piezoceramic has drawn a lot of attention in recent years. Its potential usage in microelectromechanical systems is starting to become a reality thanks to the development of an integrated circuit. An accurate equivalent circuit of piezoceramic is important in energy harvesting and the sensing system. A piezoceramic is always considered to be a current source according to empirical testing, instead of the derivation from its piezoelectric characteristics, which lacks accuracy under complicated mechanical excitation situations. In this study, a new current output model is developed to accurately estimate its value under various kinds of stimulation. Considering the frequency, amplitude and preload variation imposed on a piezoceramic, the multivariate model parameters are obtained in relation to piezo coefficients. Using this model, the current output could be easily calculated without experimental testing in order to quickly estimate the output power in energy harvesting whatever its geometric shape and the various excitations.


Sign in / Sign up

Export Citation Format

Share Document