scholarly journals A Broadband Linear-to-Circular Transmission Polarizer Based on Right-Angled Frequency Selective Surfaces

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Zhang ◽  
Jian-ying Li ◽  
Jian Xie

A broadband linear-to-circular transmission polarizer using a right-angled frequency selective surface is presented in this paper. The new proposed polarizer has both advantages of wide operational bandwidth and high transmission coefficients. To verify the design, a new polarizer working in X-band is optimized and fabricated. Experimental results show that the measured axial ratios lower than 3 dB range from 6.42 to 13.70 GHz, with low insertion loss. Meanwhile, the polarizer can operate over a broad range of frequencies from 6.75 to 10.75 GHz, when the incident angle increases to 25°.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 476
Author(s):  
Umer Farooq ◽  
Adnan Iftikhar ◽  
Muhammad Farhan Shafique ◽  
Muhammad Saeed Khan ◽  
Adnan Fida ◽  
...  

This paper presents a highly compact frequency-selective surface (FSS) that has the potential to switch between the X-band (8 GHz–12 GHz) and C-band (4 GHz–8 GHz) for RF shielding applications. The proposed FSS is composed of a square conducting loop with inward-extended arms loaded with curved extensions. The symmetric geometry allows the RF shield to perform equally for transverse electric (TE), transverse magnetic (TM), and 45° polarizations. The unit cell has a dimension of 0.176 λ0 and has excellent angular stability up to 60°. The resonance mechanism was investigated using equivalent circuit models of the shield. The design of the unit element allowed incorporation of PIN diodes between adjacent elements for switching to a lower C-band spectrum at 6.6 GHz. The biasing network is on the bottom layer of the substrate to avoid effects on the shielding performance. A PIN diode configuration for the switching operation was also proposed. In simulations, the PIN diode model was incorporated to observe the switchable operation. Two prototypes were fabricated, and the switchable operation was demonstrated by etching copper strips on one fabricated prototype between adjacent unit cells (in lieu of PIN diodes) as a proof of the design prototypes. Comparisons among the results confirmed that the design offers high angular stability and excellent performance in both bands.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 622
Author(s):  
Nur Biha Mohamed Nafis ◽  
Mohamed Himdi ◽  
Mohamad Kamal A Rahim ◽  
Osman Ayop ◽  
Raimi Dewan

Acquiring an optically transparent feature on the wideband frequency selective surface (FSS), particularly for smart city applications (building window and transportation services) and vehicle windows, is a challenging task. Hence, this study assessed the performance of optically transparent mosaic frequency selective surfaces (MFSS) with a conductive metallic element unit cell that integrated Koch fractal and double hexagonal loop fabricated on a polycarbonate substrate. The opaque and transparent features of the MFSS were studied. While the study on opaque MFSS revealed the advantage of having wideband responses, the study on transparent MFSS was performed to determine the optical transparency application with wideband feature. To comprehend the MFSS design, the evolutionary influence of the unit cell on the performance of MFSS was investigated and discussed thoroughly in this paper. Both the opaque and transparent MFSS yielded wideband bandstop and bandpass responses with low cross-polarisation (−37 dB), whereas the angular stability was limited to only 25°. The transparent MFSS displayed high-level transparency exceeding 70%. Both the simulated and measured performance comparison exhibited good correlation for both opaque and transparent MFSS. The proposed transparent MFSS with wideband frequency response and low cross-polarisation features signified a promising filtering potential in multiple applications.


2018 ◽  
Vol 7 (1) ◽  
pp. 1-6 ◽  
Author(s):  
S. Sah ◽  
M. R. Tripathy ◽  
A. Mittal

A novel dual  layer rectangular printed Antenna based on loop type Frequency selective surfaces with five concentric rings and I shaped defected ground structure (DGS) is designed and investigated. The deigned antenna is tested for application in C band, WiFi devices and some cordless telephones and X band radiolocation, airborne and naval radars as multiband  operational frequencies are at 5.5GHz, 6.81GHz, 9.3GHz and thus covers two wireless communication band C Band (4 to 8GHz ) and  X band (8 to 12 GHz) The bandwidth is 200MHz, 300MHz and 1GHz respectively and measured gain of this designed antenna are 2.42dBi against 5.5GHz, 2.80dBi against 6.81GHz, 6.76dBi against 9.3GHz. The proposed antenna in addition to multiband operation also exhibits minituarization.The Floquet port technique is used to analyse concentric rings. The Results comparison of proposed structure with the basic dual layer antenna resonaing at 5.5GHz  shows the patch area is reduced by 58.15% while the volume of the antenna is reduced by 81.5%. 


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2808
Author(s):  
Jian Cheng ◽  
Shufeng Jing ◽  
Deyuan Lou ◽  
Qibiao Yang ◽  
Qing Tao ◽  
...  

High-quality frequency selective surfaces (FSSs) are important for electromagnetic signal absorption/filtration. Usually, they are made from wave-transparent composite materials covered with a thin metal layer. Current machining methods show some disadvantages when performing fabrication on the structure. Based on its flexibility and uncontactable processing characteristics, nanosecond laser etching of aluminum-plated composite materials applied to FSSs was investigated. To observe the influence of the laser light incident angle, etching of a series of square areas with different incident angles was performed. Thereafter, an image processing method, named the image gray variance (IGV), was employed to perform etching quality evaluation analysis. The observed microscopic pictures of experimental samples were consistent with those of the IGV evaluation. The potential reasons that might affect the etching quality were analyzed. Following all the efforts above, an incident angle range of ±15° was recommended, and the best etching result was obtained at the incident angle of 10°. To observe the influence of the laser pulse overlap and focal spot size on the etched area border uniformity and on the potential damage to the base materials, a theoretical equation was given, and then its prediction of area border edge burrs fluctuation was compared with the experiments. Furthermore, SEM pictures of etched samples were examined. Based on the study, a processing window of the laser pulse overlap and focal spot size was recommended. To conclude, optimal etching results of the FSS materials could be guaranteed by using the right laser operating parameters with the nanosecond laser.


Sign in / Sign up

Export Citation Format

Share Document