scholarly journals A Liquid Chromatography-Tandem Mass Spectrometry Method for Evaluation of Two Brands of Enalapril 20 mg Tablets in Healthy Human Volunteers

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Wael Abu Dayyih ◽  
Mohammed Hamad ◽  
Ahmad Abu Awwad ◽  
Eyad Mallah ◽  
Zainab Zakarya ◽  
...  

Enalapril is an angiotensin-converting enzyme inhibitor used for treatment of hypertension and chronic heart disease. Enalaprilat is its active metabolite responsible for the activity. This study aimed to develop and validate a method for enalapril and enalaprilat analysis and to determine the bioequivalence of two tablet formulae of enalapril. LC-MS/MS bioanalytical method was developed and validated and then applied to evaluate the bioavailability of two enalapril formulae. Antihyperglycemic sitagliptin was used as internal standard (IS). The method was accurate for the within- and between-days analysis, and precise CV% was <5%, being linear over the calibration range 1.0–200.0 ng/ml. Stability was >85% and the LOD was 0.907 and 0.910 ng/ml for enalapril and enalaprilat, respectively, and LLOQ was 1 ng/ml. The pharmacokinetic parameters Cmax, tmax, AUC0–72, and AUC0–∞ values of enalapril and enalaprilat of the two formulae were calculated and nonsignificant differences were found. A linearity, specific, accurate, and precise method was developed and applied for the analysis of enalapril and enalaprilat in human plasma after oral administration of two formulae of enalapril 20 mg tablets in healthy volunteers. Depending on the statistical analysis it was concluded that the two enalapril formulae were bioequivalent.

2012 ◽  
Vol 9 (2) ◽  
pp. 899-911 ◽  
Author(s):  
D. Chandrapal Reddy ◽  
A. T. Bapuji ◽  
V. Surayanarayana Rao ◽  
V. Himabindu ◽  
D. Rama Raju ◽  
...  

A selective, high sensitive and high throughput liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) method has been developed and validated for the chromatographic separation and quantitation of duloxetine in human EDTA plasma using fluoxetine (IS) as an internal standard. Analyte and IS were extracted from human plasma by liquid-liquid extraction using MTBE-n Hexane (80:20).The eluted samples were chromatographed on X-terra RP8 (50 mmx4.6 mm, 5 μm particle size) column by using mixture of 30 mM ammonium formate (pH-5.0±0.05) and acetonitrile as an isocratic mobile phase at a flow rate of 0.40 mL/min and analyzed by mass spectrometer in the multiple reaction monitoring (MRM) using the respective m/z 298.08→154.0 for duloxetine and 310.02→148.07 for IS. The linearity of the response/ concentration curve was established in human plasma over the concentration range 0.100-100.017 ng/mL. The lower detection limit (LOD,S/N>3) was 0.04 ng/mL and the lower limit of quantization (LOQ,S/N>10) was 0.100 ng/mL. This LC-MS/MS method was validated with Intra-batch and Inter-batch precision of 5.21-7.02. The Intra-batch and Inter-batch accuracy was 97.14-103.50 respectively. Recovery of duloxetine in human plasma is 80.31% and ISTD recovery is 81.09%. The main pharmacokinetic parameters were Tmax(hr) = (7.25±1.581), Cmax(ng/mL) (44.594±18.599), AUC0→t, = (984.702±526.502) and AUC0→∞, (1027.147±572.790) respectively.


2001 ◽  
Vol 84 (4) ◽  
pp. 1252-1257 ◽  
Author(s):  
Hema S Savale ◽  
Kalpesh K Pandya ◽  
Thakorbhai P Gandhi ◽  
Indravadan A Modi ◽  
Rajiv I Modi ◽  
...  

Abstract A rapid and sensitive high performance, thin-layer chromatographic (HPTLC) method has been developed for the measurement of celiprolol in human plasma and its use in pharmacokinetic studies has been evaluated. Detection and quantitation were performed without using an internal standard. A simple extraction procedure was followed for extracting celiprolol from plasma and a known amount of the extract was spotted on precoated silica gel 60 F254 plates using a Camag Linomat IV autosampler. Celiprolol was quantitated using a Camag TLC Scanner 3. The average recovery of authentic analytes (20 to 200 ng/mL) added to plasma was 72.06 ± 2.8% and the lowest amount of celiprolol that could be detected was 10 ng/mL. The method provides a direct estimate of the amount of celiprolol present in plasma. Pharmacokinetic parameters of 2 marketed preparations have also been determined after oral administration to 12 healthy human volunteers.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4232
Author(s):  
Shereen Mowaka ◽  
Nermeen Ashoush ◽  
Mariam Tadros ◽  
Noha El Zahar ◽  
Bassam Ayoub

Enhancing drug extraction from human plasma is a challenging approach that critically affects pharmacokinetic and any further clinical studies based on the drug Cmin and Cmax values. It also has a serious impact on the sensitivity and the lower limit of quantification (LLOQ) value of the bio-analytical methods. An advanced liquid chromatography tandem mass spectrometry (LC-MS/MS) bio-analytical method of omarigliptin (25–1000 nM) was established in human plasma using one-step liquid-liquid extraction. Alogliptin was used as an internal standard (IS) to attain good recovery and reproducibility while reducing the effects of the matrix. Enhanced plasma extraction of omarigliptin was successfully achieved with tertiary butyl methyl ether—diethyl ether (TBME-DEE) mixture as the extracting solvent, while using acetonitrile as the diluent solvent for the IS to effectively decrease the formed emulsion. Multiple Reaction Monitoring (MRM) of the transition pairs of m/z 399.2 to 153.0 for omarigliptin and m/z 340.2 to 116.0 for alogliptin was employed in positive Electro Spray Ionization (ESI) mode. Human plasma samples were collected after 1.5 h (tmax) of Marizev® (12.5 mg) tablets administration to healthy human volunteers showing average concentration of 292.18 nM. Validation results were all satisfactory including successful stability studies with bias below 12%. The proposed study will be valuable for ethnicity comparison studies that will be commenced on omarigliptin in Egypt by the authors in prospective study, following the FDA recommends, to evaluate possible sub-group dissimilarities that include pharmacokinetic parameters.


Author(s):  
C A Chadwick ◽  
L J Owen ◽  
B G Keevil

Background: Dehydroepiandrosterone sulphate (DHEAS) is a steroid that is increasingly being recognized as a potential drug of abuse in many countries. This is due to its reputation as a hormone that may be able to retard the ageing process. The measurement of DHEAS is useful in the diagnosis of medical conditions such as congenital adrenal hyperplasia and polycystic ovary syndrome. Thus, a liquid chromatography-tandem mass spectrometry method has been developed to determine DHEAS concentrations in human serum. Method: The chromatography was performed using a WatersTM 2795 Alliance HT LC system coupled to a Mercury Fusion-RP column fitted with a SecurityGuardTM column. Results: DHEAS and the internal standard, deuterated DHEAS, both had a retention time of 1.5 min. The transition determined by the Micromass QuattroTM tandem mass spectrometer for DHEAS was m/z 367.3>96.7 and for the internal standard m/z 369.3>96.6. The method was linear up to 20 µmol/L; the lower limit of detection and the lower limit of quantitation were both 1 µmol/L. The intra- and interassay imprecision were <11% over a concentration range of 1-18 µmol/L for the in-house quality control and <12% for the intra- and interassay imprecision for the Bio-Rad Lyphocheck QC. Conclusion: The measurement of DHEAS by liquid chromatography-tandem mass spectrometry is robust and has a simple sample preparation procedure with a rapid cycle time of only 4 min.


Sign in / Sign up

Export Citation Format

Share Document