scholarly journals The Modified Fourier-Ritz Approach for the Free Vibration of Functionally Graded Cylindrical, Conical, Spherical Panels and Shells of Revolution with General Boundary Condition

2017 ◽  
Vol 2017 ◽  
pp. 1-32 ◽  
Author(s):  
Lijie Li ◽  
Haichao Li ◽  
Fuzhen Pang ◽  
Xueren Wang ◽  
Yuan Du ◽  
...  

The aim of this paper is to extend the modified Fourier-Ritz approach to evaluate the free vibration of four-parameter functionally graded moderately thick cylindrical, conical, spherical panels and shells of revolution with general boundary conditions. The first-order shear deformation theory is employed to formulate the theoretical model. In the modified Fourier-Ritz approach, the admissible functions of the structure elements are expanded into the improved Fourier series which consist of two-dimensional (2D) Fourier cosine series and auxiliary functions to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges regardless of boundary conditions and then solve the natural frequencies by means of the Ritz method. As one merit of this paper, the functionally graded cylindrical, conical, spherical shells are, respectively, regarded as a special functionally graded cylindrical, conical, spherical panels, and the coupling spring technology is introduced to ensure the kinematic and physical compatibility at the common meridian. The excellent accuracy and reliability of the unified computational model are compared with the results found in the literatures.

2017 ◽  
Vol 34 (5) ◽  
pp. 1598-1641 ◽  
Author(s):  
Qingshan Wang ◽  
Dongyan Shi ◽  
Qian Liang ◽  
Fuzhen Pang

Purpose The purpose of this work is to apply the Fourier–Ritz method to study the vibration behavior of the moderately thick functionally graded (FG) parabolic and circular panels and shells of revolution with general boundary conditions. Design/methodology/approach The modified Fourier series is chosen as the basis function of the admissible functions of the structure to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges, and the vibration behavior is solved by means of the Ritz method. The complete shells of revolution can be achieved by using the coupling spring technique to imitate the kinematic compatibility and physical compatibility conditions of FG parabolic and circular panels at the common meridian of θ = 0 and 2π. The convergence and accuracy of the present method are verified by other contributors. Findings Some new results of FG panels and shells with elastic restraints, as well as different geometric and material parameters, are presented and the effects of the elastic restraint parameters, power-law exponent, circumference angle and power-law distributions on the free vibration characteristic of the panels are also presented, which can be served as benchmark data for the designers and engineers to avoid the unpleasant, inefficient and structurally damaging resonant. Originality/value The paper could provide the reference for the research about the moderately thick FG parabolic and circular panels and shells of revolution with general boundary conditions. In addition, the change of the boundary conditions can be easily achieved by just varying the stiffness of the boundary restraining springs along all the edges of panels without making any changes in the solution procedure.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Qingshan Wang ◽  
Dongyan Shi ◽  
Fuzhen Pang ◽  
Qian Liang

AbstractA Fourier-Ritz method for predicting the free vibration of composite laminated circular panels and shells of revolution subjected to various combinations of classical and non-classical boundary conditions is presented in this paper. A modified Fourier series approach in conjunction with a Ritz technique is employed to derive the formulation based on the first-order shear deformation theory. The general boundary condition can be achieved by the boundary spring technique in which three types of liner and two types of rotation springs along the edges of the composite laminated circular panels and shells of revolution are set to imitate the boundary force. Besides, the complete shells of revolution can be achieved by using the coupling spring technique to imitate the kinematic compatibility and physical compatibility conditions of composite laminated circular panels at the common meridian with θ = 0 and 2π. The comparisons established in a sufficiently conclusive manner show that the present formulation is capable of yielding highly accurate solutions with little computational effort. The influence of boundary and coupling restraint parameters, circumference angles, stiffness ratios, numbers of layer and fiber orientations on the vibration behavior of the composite laminated circular panels and shells of revolution are also discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Dongyan Shi ◽  
Shuai Zha ◽  
Hong Zhang ◽  
Qingshan Wang

The free vibration analysis of the functionally graded (FG) double curved shallow shell structures with general boundary conditions is investigated by an improved Fourier series method (IFSM). The material properties of FG structures are assumed to vary continuously in the thickness direction, according to the four graded parameters of the volume distribution function. Under the current framework, the displacement and rotation functions are set to a spectral form, including a double Fourier cosine series and two supplementary functions. These supplements can effectively eliminate the discontinuity and jumping phenomena of the displacement function along the edges. The formulation is based on the first-order shear deformation theory (FSDT) and Rayleigh-Ritz technique. This method can be universally applied to the free vibration analysis of the shallow shell, because it only needs to change the relevant parameters instead of modifying the basic functions or adapting solution procedures. The proposed method shows excellent convergence and accuracy, which has been compared with the results of the existing literatures. Numerous new results for free vibration analysis of FG shallow shells with various boundary conditions, geometric parameter, material parameters, gradient parameters, and volume distribution functions are investigated, which may serve as the benchmark solution for future researches.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Xiancheng Wang ◽  
Wei Li ◽  
Jianjun Yao ◽  
Zhenshuai Wan ◽  
Yu Fu ◽  
...  

In this investigation, an exact method based on the first-order shear deformation shallow shell theory (FSDSST) is performed for the free vibration of functionally graded sandwich shallow shells (FGSSS) on Winkler and Pasternak foundations with general boundary restraints. Vibration characteristics of the FGSSS have been obtained by the energy function represented in the orthogonal coordinates, in which the displacement and rotation components consisted of standard double Fourier cosine series and several closed-form supplementary functions are introduced to eliminate the potential jumps and boundary discontinuities. Then, the expansion coefficients are determined by using Rayleigh-Ritz method. The proposed method shows good accuracy and reliability by comprehensive investigation concerning free vibration of the FGSSS. Numerous new vibration results for FGSSS on Winkler and Pasternak foundations with various curvature types, geometrical parameters, and boundary restraints are provided, which may serve as benchmark solutions for future research. In addition, the effects of the inertia, shear deformation, and foundation coefficients on free vibration characteristic of FGSSS are illustrated.


Author(s):  
J. Lu ◽  
X. Hua ◽  
C. Chiu ◽  
X. Zhang ◽  
S. Li ◽  
...  

The porous material is an emerging lightweight material, which is able to reduce structural weight and also keeps the superiority of the structure. Therefore, this work is devoted to the investigation of the functionally graded porous (FGP) annular and circular plates with general boundary conditions. The unified modeling method is proposed by combining the first-order shear deformation theory, the virtual spring technology, the multi-segment partition method, and the semi-analysis Rayleigh–Ritz approach. Afterwards, the convergency and correctness of the proposed method are verified, respectively. The frequency parameters, modal shapes, and forced vibration responses are uniformly calculated based on the proposed method. Finally, the dynamic analyses of the FGP annular and circular plates with different parameters, such as the porosity distribution types, porosity ratios, boundary condition types, geometry parameters, and load types, are conducted in detail. It is found that the reasonable porous design is able to keep the dynamic stability of the structure under different parameter variations.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Fuzhen Pang ◽  
Cong Gao ◽  
Jie Cui ◽  
Yi Ren ◽  
Haichao Li ◽  
...  

This paper describes a unified solution to investigate free vibration solutions of functionally graded (FG) spherical shell with general boundary restraints. The analytical model is established based on the first-order shear deformation theory, and the material varies uniformly along the thickness of FG spherical shell which is divided into several sections along the meridian direction. The displacement functions along circumferential and axial direction are, respectively, composed by Fourier series and Jacobi polynomial regardless of boundary restraints. The boundary restraints of FG spherical shell can be easily simulated according to penalty method of spring stiffness technique, and the vibration solutions are obtained by Rayleigh–Ritz method. To verify the reliability and accuracy of the present solutions, the convergence and numerical verification have been conducted about different boundary parameters, Jacobi parameter, etc. The results obtained by the present method closely agree with those obtained from the published literatures, experiments, and finite element method (FEM). The impacts of geometric dimensions and boundary conditions on the vibration characteristics of FG spherical shell structure are also presented.


2020 ◽  
Vol 20 (05) ◽  
pp. 2050068 ◽  
Author(s):  
Zhengmin Hu ◽  
Kai Zhou ◽  
Yong Chen

In this paper, the sound radiation behaviors of the functionally graded porous (FGP) plate with arbitrary boundary conditions and resting on elastic foundation are studied by means of the modified Fourier series method. It is assumed that a total of three types of porosity distributions are considered in the present study. The material parameters are determined according to the porosity coefficient used to denote the size of pores in the plate. The governing equations of the FGP plate are derived by utilizing the Hamilton’s principle on the basis of the first-order deformation theory (FSDT). Each displacement component of the FGP plate is expanded as the Fourier cosine series combined with auxiliary polynomial functions introduced to enhance the convergence rate of the series expansions. The acoustic response of the FGP plate due to a concentrated harmonic load is calculated by evaluating the Rayleigh integral. Good agreements are attained by comparing the present results with those in available literatures, which show the accuracy and versatility of the developed method in this paper. Finally, the influences of the porosity distribution type, porosity coefficient, boundary condition and elastic foundation on the sound radiation of the FGP plate are analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document