scholarly journals Applying Environmental Isotope Theory to Groundwater Recharge in the Jiaozuo Mining Area, China

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Pinghua Huang ◽  
Xinyi Wang

This study establishes the surface water evaporation line in theory and numerically simulates the δD and δ18O value distribution interval of the recharge source of deep groundwater in the Jiaozuo mining area. The recharge elevation is calculated based on hydrogen and oxygen isotope tracer theory. Theoretical calculation and experimental data indicate that the surface water evaporation line in the study area in theory is almost the same as the measured surface data-fitting line. A significant linear relationship is identified between δ18O and the elevation of spring outcrop. The topography increases per 100 m, and the δ18O value reduces by 0.23‰ on average. The δ18O value is converted into formula to calculate the groundwater recharge elevation, which is approximately from 400 to 800 m. The measured tritium values of karst groundwater are greater than 3 TU. The second factor score is a fraction distribution in shallow groundwater and negative fraction distribution in spring and deep groundwater, which indicates that the Northern Taihang Mountain is the main recharge area, where carbonate-exposed areas exist. The research conclusion holds a certain value for the flood evaluation of local coal mines.

2020 ◽  
Vol 51 (6) ◽  
pp. 1506-1520
Author(s):  
Weihua Wang ◽  
Yaning Chen ◽  
Wanrui Wang

Abstract Groundwater is an important source for maintaining desert ecological processes in arid areas. With the increasing intensity of climate change and human activities, the rivers in Tarim Basin are severely dried-up. Aiming at the dried-up river, vegetation degradation and oasis maintenance in the middle and lower reaches of dried-up river basin, groundwater recharge and groundwater-surface water interaction have become hotspots, but are not well known. We examined spatial distributions and controlling factors of groundwater stable isotopes and recharge at oasis scale using data from 247 samples surveyed in the four headwaters in the northern Tarim Basin. Stable isotopes of surface water and groundwater were different from each other, and varied among sampling sites. Surface water and groundwater isotopes generally became enriched towards the east throughout the study area, while surface water isotopes showed enrichment towards the upstream direction within each catchment, mainly due to cultivated area expansion. Surface water mainly originated from precipitation, groundwater, and meltwater, while shallow groundwater derived from lateral groundwater flow, river and irrigated water infiltration, and little precipitation. The mainstream water was directly recharged by the headwaters. The results could provide a new insight into groundwater cycling in oases of dried-up river basins, which is helpful for regional groundwater management.


2019 ◽  
Vol 70 (10) ◽  
pp. 3678-3680
Author(s):  
Alina Cochiorca ◽  
Narcis Barsan ◽  
Florin Marian Nedeff ◽  
Ion Sandu ◽  
Emilian Florin Mosnegutu ◽  
...  

This paper presents a study on assessment of water quality. According to a study, mining activities have a significant impact on water quality (lakes, surface water and groundwater), which has become a major problem globally. Due to mining and exploitation processes, lakes can be formed around these mines. Also, these lakes have been formed around the world and are steadily increasing. The purpose of this study is to watch the quality of water from the area around mining activities. This study refers to the, Groapa Burlacu lake around the mining exploitation Targu Ocna, Romania. This lake was formed on the northern bottle of the massive salt, strongly affected by the underground activities. Sampling for the determination the concentrations of Cl- and NaCl from the studied area was made at different depths (0 m, -5 m, -10 m, -15 m, -20 m, -25 m, -30 m, -35 m -40 m). Besides these concentrations, physical parameters of the water (pH, turbidity, electrical conductivity, dissolved oxygen and temperature) were also measured. To determine the physical parameters in the monitored area, sampling was done from four different points of the area and then put together for analysis. These parameters were measured on site using portable equipment. The data on the analyzed concentrations indicate that at depths of less than 5.0 m, the NaCl concentration values are more than 250 g/L.


2021 ◽  
Vol 35 (3) ◽  
Author(s):  
Zhigang Sun ◽  
Guofeng Zhu ◽  
Zhuanxia Zhang ◽  
Yuanxiao Xu ◽  
Leilei Yong ◽  
...  

2018 ◽  
Vol 42 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Shahpara Sheikh Dola ◽  
Khairul Bahsar ◽  
Mazeda Islam ◽  
Md Mizanur Rahman Sarker

Attempt has been made to find the relationship between the basin groundwater flow and the current water chemistry of south-western part of Bangladesh considering their lithological distribution and aquifer condition. The correlation of water chemistry and basin groundwater flow is depicted in the conceptual model. The water-types of shallow groundwater are predominantly Mg-Na-HCO3 and Ca- Mg-Na-HCO3 type. In the deep aquifer of upper delta plain is predominately Na-Cl, Ca-HCO3 and Mg- HCO3 type. In the lower delta plain Na-Cl type of water mainly occurs in the shallow aquifer and occasionally Ca-HCO3, Ca-Mg-Na-HCO3 and Mg-HCO3 type may also occur in shallow aquifer of the eastern part of lower delta plain which could have originated from the recent recharge of rain water. Na- Cl type water is also found in the deep aquifer of lower delta plain. The origin of Na-Cl type water in the deep aquifer of lower delta part might be connate water or present day sea water intrusion. Fresh water occurring in the deep aquifer in the lower delta area is mostly of Mg-Ca-HCO3 and Na-HClO3 types. This type of water originate from intermediate or deep basin flow from the northern part of Bangladesh. The probable source of deep groundwater is Holocene marine transgression (Khan et al. 2000) occurred in 3000–7000 cal years BP and the deep groundwater of Upper Delta plain and Lower Delta plain is clearly influenced by deep basin flow coming from north part of BangladeshJournal of Bangladesh Academy of Sciences, Vol. 42, No. 1, 41-54, 2018


2012 ◽  
Vol 44 (1) ◽  
pp. 117-130 ◽  
Author(s):  
Tomasz Olichwer ◽  
Robert Tarka ◽  
Magdalena Modelska

Chemical composition of groundwaters was investigated in the region of the Hornsund fjord (southern Spitsbergen). The investigations were conducted during polar expeditions organized by the University of Wroclaw in two summer seasons of 2003 and 2006. Three zones of groundwater circulation: suprapermafrost, intrapermafrost and subpermafrost, were identified in areas of perennial permafrost in the region of Hornsund. The zone of shallow circulation occurs in non-glaciated (suprapermafrost) and subglacial areas. In this zone, the chemical composition of groundwater originates from initial chemical composition of precipitation, mineralogical composition of bedrock, oxidation of sulphides and dissolution of carbonates. The intermediate system of circulation is connected with water flow inside and below perennial permafrost (intrapermafrost and subpermafrost). In this zone, the chemical composition of groundwater is mainly controlled by dissolution of carbonates, ion exchange processes involving Ca2+ substitution by Na+, and oxidation of sulphides under oxygen-depleted conditions. The subpermafrost zone (deep groundwater circulation) occurs in deep-tectonic fractures, which are likely conduits for the descent of shallow groundwater to deeper depths. In this zone, the groundwater shows lower mineralization comparing to intrapermafrost zone and has a multi-ion nature Cl–HCO3–Na-Ca–Mg.


Sign in / Sign up

Export Citation Format

Share Document