scholarly journals Groundwater recharge in the oasis-desert areas of northern Tarim Basin, Northwest China

2020 ◽  
Vol 51 (6) ◽  
pp. 1506-1520
Author(s):  
Weihua Wang ◽  
Yaning Chen ◽  
Wanrui Wang

Abstract Groundwater is an important source for maintaining desert ecological processes in arid areas. With the increasing intensity of climate change and human activities, the rivers in Tarim Basin are severely dried-up. Aiming at the dried-up river, vegetation degradation and oasis maintenance in the middle and lower reaches of dried-up river basin, groundwater recharge and groundwater-surface water interaction have become hotspots, but are not well known. We examined spatial distributions and controlling factors of groundwater stable isotopes and recharge at oasis scale using data from 247 samples surveyed in the four headwaters in the northern Tarim Basin. Stable isotopes of surface water and groundwater were different from each other, and varied among sampling sites. Surface water and groundwater isotopes generally became enriched towards the east throughout the study area, while surface water isotopes showed enrichment towards the upstream direction within each catchment, mainly due to cultivated area expansion. Surface water mainly originated from precipitation, groundwater, and meltwater, while shallow groundwater derived from lateral groundwater flow, river and irrigated water infiltration, and little precipitation. The mainstream water was directly recharged by the headwaters. The results could provide a new insight into groundwater cycling in oases of dried-up river basins, which is helpful for regional groundwater management.

2018 ◽  
Vol 53 (6) ◽  
pp. 2896-2907 ◽  
Author(s):  
Xiao-Lin Chang ◽  
Ming-Cai Hou ◽  
Xin-Chun Liu ◽  
Elizabeth Orr ◽  
Min Deng ◽  
...  

2017 ◽  
Author(s):  
Jihong Qu ◽  
Shibao Lu ◽  
Zhipeng Gao ◽  
Wujin Li ◽  
Zhiping Li ◽  
...  

Abstract. The transforming relationship between surface water and groundwater as well as their origins are the basis for studying the transport of pollutants in river-groundwater systems. A typical section of the river was chosen to sample the surface water and shallow groundwater. Then, a Piper trilinear diagram, Gibbs diagram, ratios of major ions, factor analysis, cluster analysis and other methods were used to investigate the hydrogeochemical evolution of surface water and groundwater and determine the formation of hydrogeochemical components in different water bodies. Based on the distribution characteristics of hydrogen and oxygen stable isotopes δD and δ18O and discharge hydrograph separation methods, the relationship between surface water and groundwater in the Weihe River was analyzed. The results indicated that the river water is a SO4·Cl—Na type and that the groundwater hydrogeochemical types are not the same. The dominant anions are HCO3− in the upstream reaches and are SO42− and Cl− in downstream reaches. Hydrogeochemical processes include evaporation and concentration, weathering of rocks, ion exchange, and dissolution infiltration reactions. The δD and δ18O of surface water change little along the river and are more enriched than are those of the groundwater. With the influences of precipitation, irrigation, river recharge and evaporation, the δD and δ18O of shallow groundwater at different sections are not the same. There is a close relationship between the surface water and groundwater. Surface water supplies the groundwater, which provides the hydrodynamic conditions for the entry of pollutants into the aquifer.


2017 ◽  
Vol 28 (2) ◽  
pp. 143-159
Author(s):  
Roslanzairi Mostapa ◽  
◽  
Mohamad Shaiful Md. Yusuff ◽  
Widad Fadhlullah ◽  
M. I. Syakir ◽  
...  

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Pinghua Huang ◽  
Xinyi Wang

This study establishes the surface water evaporation line in theory and numerically simulates the δD and δ18O value distribution interval of the recharge source of deep groundwater in the Jiaozuo mining area. The recharge elevation is calculated based on hydrogen and oxygen isotope tracer theory. Theoretical calculation and experimental data indicate that the surface water evaporation line in the study area in theory is almost the same as the measured surface data-fitting line. A significant linear relationship is identified between δ18O and the elevation of spring outcrop. The topography increases per 100 m, and the δ18O value reduces by 0.23‰ on average. The δ18O value is converted into formula to calculate the groundwater recharge elevation, which is approximately from 400 to 800 m. The measured tritium values of karst groundwater are greater than 3 TU. The second factor score is a fraction distribution in shallow groundwater and negative fraction distribution in spring and deep groundwater, which indicates that the Northern Taihang Mountain is the main recharge area, where carbonate-exposed areas exist. The research conclusion holds a certain value for the flood evaluation of local coal mines.


2017 ◽  
Vol 5 (3) ◽  
pp. SK51-SK63 ◽  
Author(s):  
Zhongbo Gao ◽  
Wei Tian ◽  
Lei Wang ◽  
Yongmin Shi ◽  
Mao Pan

A basaltic dike-sill network is emplaced into the shallow subsurface of the Yingmai-2 dome, northern Tarim Basin, northwest China. The 3D seismic reflection imaging suggests that these dikes and sills are fed from an intrusion at the focal area of the dome. This basaltic intrusion has a width of approximately 3000 m and thickness of approximately 1000 m, and it is connected with a much larger Early Permian igneous body in the northern Tarim Basin. An unconformity between the Permian basalt lava flows and the base Triassic conglomerates truncates the dome, meaning that the dome must have developed prior to the Triassic. The basaltic intrusion that emplaced beneath the dome likely pushed the surrounding middle Cambrian salts away and instigated uplift of the overlying upper Cambrian to the lower Permian strata. In most cases, igneous activity plays a negative role on formation of oil and gas reservoirs. However, in the Yingmai-2 case, intrusive magmatic activity has caused “forced folding” of the overburdened strata and controlled the formation of a large commercial oil trap. We suggest that the magmatic activity thus also acts as a positive role on the local formation of a producing petroleum system.


2020 ◽  
Vol 73 (3) ◽  
pp. 335-373
Author(s):  
Federico Dragoni ◽  
Niels Schoubben ◽  
Michaël Peyrot

ABSTRACTBuilding on collaborative work with Stefan Baums, Ching Chao-jung, Hannes Fellner and Georges-Jean Pinault during a workshop at Leiden University in September 2019, tentative readings are presented from a manuscript folio (T II T 48) from the Northern Tarim Basin in Northwest China written in the thus far undeciphered Formal Kharoṣṭhī script. Unlike earlier scholarly proposals, the language of this folio cannot be Tocharian, nor can it be Sanskrit or Middle Indic (Gāndhārī). Instead, it is proposed that the folio is written in an Iranian language of the Khotanese-Tumšuqese type. Several readings are proposed, but a full transcription, let alone a full translation, is not possible at this point, and the results must consequently remain provisional.


Sign in / Sign up

Export Citation Format

Share Document