filter divergence
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 25 (6) ◽  
pp. 1473-1486
Author(s):  
Yulong Bai ◽  
Di Wang ◽  
Yizhao Wang ◽  
Mingheng Chang

The methods of searching for optimized parameters have substantial effects on the forecast accuracy of ensemble data assimilation systems. The selection of these factors is usually performed using trial-and-error methods, and poor parameterizations may lead to filter divergence. Combined with the local ensemble transform Kalman filtering method (LETKF), a technique for an automated search of the best configuration (parameters) of a data assimilation system is proposed. To obtain better assimilation, a differential evolution (DE) algorithm-based multiple-factor parameterization method results in the corresponding circumstances. By combining with fast-searching DE algorithms, we may retrieve the most ideal parameter combinations. Several numerical experiments performed with the Lorenz-96 model show that new methods performed better than the original one-parameter optimization methods. As the basis of DE methods, the best combinations of the local radius and the covariance inflation parameter, which can guarantee the best DA performances in the corresponding circumstances, are retrieved. It is found that the new method is capable of outperforming previous search algorithms under both perfect and imperfect model scenarios, and the calculation cost in Lorenz-96 model is lower. However, how to apply the new proposed method to more complex atmospheric or land surface models requires further verification.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6056
Author(s):  
Yoji Takayama ◽  
Takateru Urakubo ◽  
Hisashi Tamaki

One of the great unsolved GNSS problems is inaccuracy in urban canyons due to Non-Line-Of-Sight (NLOS) signal reception. Owing to several studies about the NLOS signal rejection method, almost all NLOS signals can be excluded from the calculation of the position. However, such precise NLOS rejection would make satellite geometry poor, especially in dense urban environments. This paper points out, through numerical simulations and theoretical analysis, that poor satellite geometry leads to unintentional performance degradation of the Kalman filter with a conventional technique to prevent filter divergence. The conventional technique is to bump up process noise covariance, and causes unnecessary inflation of estimation-error covariance when satellite geometry is poor. We propose a novel choice of process noise covariance based on satellite geometry that can reduce such unnecessary inflation. Numerical and experimental results demonstrate that performance improvement can be achieved by the choice of process noise covariance even for a poor satellite geometry.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiaoxia Zheng ◽  
Bin Tang ◽  
Hongping Pu

In order to improve the surveillance effect of the aviation target surveillance radar, this paper improves the traditional filtering algorithm and builds the channel optimization system of the ADS-B aviation target surveillance radar based on the improved filtering algorithm. Moreover, this paper uses algorithm improvement to ensure the positive definite or semipositive definiteness of the state covariance and uses the root mean square volume Kalman filter to avoid the filter divergence or tracking interruption caused by the nonpositive definiteness of the matrix; the filtering principle of the interactive multimodel is to use multiple filters for parallel processing and achieve the adaptive adjustment algorithm residual error by adjusting the one-step prediction covariance in the adjustment algorithm. In addition, this paper combines the actual needs to construct a system functional structure to optimize the channel of the ADS-B aviation target surveillance radar and uses software engineering methods to model and analyze the requirements. Finally, this paper designs experiments to verify system performance. The research results show that the performance of the system constructed in this paper meets actual needs.


2020 ◽  
Vol 9 (6) ◽  
pp. 340
Author(s):  
Xiaohua Tong ◽  
Runjie Wang ◽  
Wenzhong Shi ◽  
Zhiyuan Li

Mathematically describing the physical process of a sequential data assimilation system perfectly is difficult and inevitably results in errors in the assimilation model. Filter divergence is a common phenomenon because of model inaccuracies and affects the quality of the assimilation results in sequential data assimilation systems. In this study, an approach based on an L1-norm constraint for filter-divergence suppression in sequential data assimilation systems was proposed. The method adjusts the weights of the state-simulated values and measurements based on new measurements using an L1-norm constraint when filter divergence is about to occur. Results for simulation data and real-world traffic flow measurements collected from a sub-area of the highway between Leeds and Sheffield, England, showed that the proposed method produced a higher assimilation accuracy than the other filter-divergence suppression methods. This indicates the effectiveness of the proposed approach based on the L1-norm constraint for filter-divergence suppression.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1897
Author(s):  
Yi Yang ◽  
Fei Li ◽  
Yi Gao ◽  
Yanhui Mao

In the process of the attitude measurement for a steering drilling system, the measurement of the attitude parameters may be uncertain and unpredictable due to the influence of server vibration on bits. In order to eliminate the interference caused by vibration on the measurement and quickly obtain the accurate attitude parameters of the steering drilling tool, a new method for multi-sensor dynamic attitude combined measurement is presented. Firstly, by using a triaxial accelerometer and triaxial magnetometer measurement system, the nonlinear model based on the quaternion is established. Then, an improved adaptive fading square root unscented Kalman filter is proposed for eliminating the vibration disturbance signal. In this algorithm, the square root of the state covariance matrix is used to replace the covariance matrix in the classical unscented Kalman filter (UKF) to avoid the filter divergence caused by the negative definite state covariance matrix. The fading factor is introduced into UKF to adjust the filter gain in real-time and improve the adaptive ability of the algorithm to mutation state. Finally, the computational method of the fading factor is optimized to ensure the self-adaptability of the algorithm and reduce the computational complexity. The results of the laboratory test and the field-drilling data show that the proposed method can filter out the interference noise in the attitude measurement sensor effectively, improve the solution accuracy of attitude parameters of drilling tools in the case of abrupt changes in the measuring environment, and thus ensuring the dynamic stability of the well trajectory.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yingzhong Tian ◽  
Heru Suwoyo ◽  
Wenbin Wang ◽  
Long Li

The probability-based filtering method has been extensively used for solving the simultaneous localization and mapping (SLAM) problem. Generally, the standard filter utilizes the system model and prior stochastic information to approximate the posterior state. However, in the real-time situation, the noise statistics properties are relatively unknown, and the system is inaccurately modeled. Thus the filter divergence might occur in the integration system. Moreover, the expected accuracy might be challenging to be reached due to the absence of the responsive time-varying of both the process and measurement noise statistic which naturally can enlarge the uncertainty in the continuous system. Consequently, the traditional strategy needs to be improved aiming to provide an ability to estimate those properties. In order to accomplish this issue, the new adaptive filter is proposed in this paper, termed as an adaptive smooth variable structure filter (ASVSF). Sequentially, the improved SVSF is derived and implemented; the process and measurement noise statistics are estimated by utilizing the maximum a posteriori (MAP) creation and the weighted exponent concept, and the covariance correction step is added based on the divergence suppression concept. In this paper the ASVSF is applied to overcome the SLAM problem of an autonomous mobile robot; henceforth it is abbreviated as an ASVSF-SLAM algorithm. It is simulated and compared to the classical algorithm. The simulation results demonstrated that the proposed algorithm has better performance, stability, and effectiveness.


2019 ◽  
Vol 147 (1) ◽  
pp. 345-362 ◽  
Author(s):  
Roland Potthast ◽  
Anne Walter ◽  
Andreas Rhodin

Particle filters are well known in statistics. They have a long tradition in the framework of ensemble data assimilation (EDA) as well as Markov chain Monte Carlo (MCMC) methods. A key challenge today is to employ such methods in a high-dimensional environment, since the naïve application of the classical particle filter usually leads to filter divergence or filter collapse when applied within the very high dimension of many practical assimilation problems (known as the curse of dimensionality). The goal of this work is to develop a localized adaptive particle filter (LAPF), which follows closely the idea of the classical MCMC or bootstrap-type particle filter, but overcomes the problems of collapse and divergence based on localization in the spirit of the local ensemble transform Kalman filter (LETKF) and adaptivity with an adaptive Gaussian resampling or rejuvenation scheme in ensemble space. The particle filter has been implemented in the data assimilation system for the global forecast model ICON at Deutscher Wetterdienst (DWD). We carry out simulations over a period of 1 month with a global horizontal resolution of 52 km and 90 layers. With four variables analyzed per grid point, this leads to 6.6 × 106 degrees of freedom. The LAPF can be run stably and shows a reasonable performance. We compare its scores to the operational setup of the ICON LETKF.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Boris Skorohod

Finite impulse response (FIR) state estimation algorithms have been much discussed in literature lately. It is well known that they allow overcoming the Kalman filter divergence caused by modeling uncertainties. In this paper, new receding horizon unbiased FIR filters ignoring noise statistics for time-varying discrete state-space models are proposed. They have the following advantages. First, the proposed filters use only known means of state vector components at starting points of sliding windows. This allows us to take into account priory statistical information (on average) about specified movements of the system. Second, the iterative version of the filter has a Kalman-like form. Besides, its initialization does not include a training cycle in a batch form. Such filters may have a wide range of applications. In this paper, position and speed estimation of sea targets using angle measurements in azimuth and elevation is considered as an example.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Hyungsik Jung ◽  
Honggeun Jo ◽  
Kyungbook Lee ◽  
Jonggeun Choe

Ensemble Kalman filter (EnKF) uses recursive updates for data assimilation and provides dependable uncertainty quantification. However, it requires high computing cost. On the contrary, ensemble smoother (ES) assimilates all available data simultaneously. It is simple and fast, but prone to showing two key limitations: overshooting and filter divergence. Since channel fields have non-Gaussian distributions, it is challenging to characterize them with conventional ensemble based history matching methods. In many cases, a large number of models should be employed to characterize channel fields, even if it is quite inefficient. This paper presents two novel schemes for characterizing various channel reservoirs. One is a new ensemble ranking method named initial ensemble selection scheme (IESS), which selects ensemble members based on relative errors of well oil production rates (WOPR). The other is covariance localization in ES, which uses drainage area as a localization function. The proposed method integrates these two schemes. IESS sorts initial models for ES and these selected are also utilized to calculate a localization function of ES for fast and reliable channel characterization. For comparison, four different channel fields are analyzed. A standard EnKF even using 400 models shows too large uncertainties and updated permeability fields lose channel continuity. However, the proposed method, ES with covariance localization assisted by IESS, characterizes channel fields reliably by utilizing good 50 models selected. It provides suitable uncertainty ranges with correct channel trends. In addition, the simulation time of the proposed method is only about 19% of the time required for the standard EnKF.


Author(s):  
Sung-Hoon Mok ◽  
Youngjoo Kim ◽  
Hyochoong Bang

This paper addresses a vision-based terrain referenced navigation of an aircraft. A digital terrain map, in the surroundings of the aircraft, is compared with the camera measurements to estimate the aircraft position. Generally, the measurement equation in the terrain referenced navigation is highly nonlinear due to the sharp changes of terrain. Thus, the conventional extended Kalman filter could lead to unstable navigation solutions. In this paper, a new approach using an adaptive extended Kalman filter is proposed to cope up with the nonlinearity problem. A least squares method is utilized to derive the linearized measurement equations. The Jacobian matrix and sensor noise covariance are modified as a means of smoothing the sharp changes of terrain. Monte Carlo simulations verify that the proposed filter gives the stable navigation solutions, even when there is a large initial error, which is the primary reason for the filter divergence. Moreover, the proposed adaptation barely requires additional computational burden, whereas the high-order filters such as particle filter generally needs higher computational power.


Sign in / Sign up

Export Citation Format

Share Document