scholarly journals Bundle Pricing Decisions for Fresh Products with Quality Deterioration

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Fang ◽  
Yiping Jiang ◽  
Xingxing Han

How to sell fresh products quickly to decrease the storage cost and to meet customer quality requirement is of vital importance in the food supply chain. Bundling fresh products is an efficient strategy to promote sales and reduce storage pressure of retailers. In this paper, we consider the bundle pricing decisions for homogeneous fresh products with quality deterioration. The value of fresh products with quality deterioration is approximated as an exponential function based on which customer’s reservation prices are calculated. A nonlinear mixed integer programming model is used to formulate the bundle pricing problem for fresh products. By adding auxiliary decision variables, this model is converted into a mixed integer linear program. Numerical experiments and sensitive analysis are conducted to provide managerial insights for bundling fresh products with quality deterioration.

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 724
Author(s):  
Yiping Jiang ◽  
Bei Bian ◽  
Lingling Li

With the rise of vegetable online retailing in recent years, the fulfillment of vegetable online orders has been receiving more and more attention. This paper addresses an integrated optimization model for harvest and farm-to-door distribution scheduling for vegetable online retailing. Firstly, we capture the perishable property of vegetables, and model it as a quadratic postharvest quality deterioration function. Then, we incorporate the postharvest quality deterioration function into the integrated harvest and farm-to-door distribution scheduling and formulate it as a quadratic vehicle routing programming model with time windows. Next, we propose a genetic algorithm with adaptive operators (GAAO) to solve the model. Finally, we carry out numerical experiments to verify the performance of the proposed model and algorithm, and report the results of numerical experiments and sensitivity analyses.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Dandan Hu ◽  
Zhi-Wei Liu ◽  
Wenshan Hu

In many services, promise of specific response time is advertised as a commitment by the service providers for the customer satisfaction. Congestion on service facilities could delay the delivery of the services and hurts the overall satisfaction. In this paper, congestion service facilities location problem with promise of response time is studied, and a mixed integer nonlinear programming model is presented with budget constrained. The facilities are modeled as M/M/c queues. The decision variables of the model are the locations of the service facilities and the number of servers at each facility. The objective function is to maximize the demands served within specific response time promised by the service provider. To solve this problem, we propose an algorithm that combines greedy and genetic algorithms. In order to verify the proposed algorithm, a lot of computational experiments are tested. And the results demonstrate that response time has a significant impact on location decision.


2017 ◽  
Vol 29 (6) ◽  
pp. 603-611 ◽  
Author(s):  
Nan Jiang ◽  
Xiaoning Zhang ◽  
Hua Wang

This paper investigates a hybrid management policy of road tolls and tradable credits in mixed road networks with both public and private roads. In the public sub-network, a tradable credit scheme is applied to mitigate traffic congestion. In the private sub-network, tolls are collected by the private company, but the toll levels and toll locations are determined by the government. The purpose of toll charge is two-fold: on the one hand, the government uses it as a tool for mitigating congestion; on the other hand, a threshold of revenue should be guaranteed for the profitability of the private company. A bi-level programming model is formulated to minimize the total travel time in the network by taking into account the user equilibrium travel behaviour and the revenue requirement of private firms. To obtain a  global optimum solution, the bi-level model is transformed into an equivalent single-level mixed integer linear program that can be easily solved with commercial software. Numerical examples are provided to demonstrate the effectiveness of the developed model and the efficiency of the proposed algorithm. It is shown that the mixed management schemes can achieve favourable targets, namely, joint implementation of road tolls and tradable credits can effectively mitigate traffic congestion and meanwhile maintain reasonable revenue for the private company.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Qianying Wang ◽  
Yiping Jiang ◽  
Yang Liu

With the diversification of customer’s demand and the shortage of social resources, meeting diverse requirements of customers and reducing logistics costs have attracted great attention in logistics area. In this paper, we address an integrated optimization problem that combines fashion clothing assortment packing with collaborative shipping simultaneously. We formulate this problem as a mixed integer nonlinear programming model (MINLP) and then convert the proposed model into a simplified model. We use LINGO 11.0 to solve the transformed model. Numerical experiments have been conducted to verify the effectiveness and efficiency of the proposed model, and the numerical results show that the proposed model is beneficial to the fashion clothing assortment packing and collaborative shipping planning.


2012 ◽  
Vol 433-440 ◽  
pp. 1957-1961 ◽  
Author(s):  
Su Wang ◽  
Iko Kaku ◽  
Guo Yue Chen ◽  
Min Zhu

Tugboat is one kind of important equipment in container terminal to help ships for docking or leaving the berth. Tugboat assignment operation is one of the most important decision making problem because it has an important effect on the turnaround time of ships. In this paper, a mixed-integer programming model combined with scheduling rule is formulated for the Tugboat Assignment Problem (TAP). Then a solution method is provided to obtain the optimal solution of TAP problem. Finally, numerical experiments are executed to illustrate the utility of the model and to analyze the effects of the number and service capacity of tugboats on the turnaround time of ships.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Feifeng Zheng ◽  
Zhaojie Wang ◽  
Yinfeng Xu ◽  
Ming Liu

Based on the classical MapReduce concept, we propose an extended MapReduce scheduling model. In the extended MapReduce scheduling problem, we assumed that each job contains an open-map task (the map task can be divided into multiple unparallel operations) and series-reduce tasks (each reduce task consists of only one operation). Different from the classical MapReduce scheduling problem, we also assume that all the operations cannot be processed in parallel, and the machine settings are unrelated machines. For solving the extended MapReduce scheduling problem, we establish a mixed-integer programming model with the minimum makespan as the objective function. We then propose a genetic algorithm, a simulated annealing algorithm, and an L-F algorithm to solve this problem. Numerical experiments show that L-F algorithm has better performance in solving this problem.


2010 ◽  
Vol 4 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Bartosz Sawik

This paper presents an application of mixed integer programming model for op- timal allocation of workers among supporting services in a hospital. The services include logistics, inventory management, financial management, operations management, medical analysis, etc. The optimality criterion of the problem is to minimize operational costs of supporting services subject to some specific constraints. The constraints represent specific conditions for resource allocation in a hospital. The overall problem is formulated as a triple- objective assignment model, where the decision variables represent the assignment of people to various jobs. A reference point approach with the Chebyshev metric is applied for the problem solution. The results of computational experiments modeled on a real data from a hospital in Lesser Poland are reported.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zejian Qin ◽  
Bingyuan Cao ◽  
Shu-Cherng Fang ◽  
Xiao-Peng Yang

The problem of geometric programming subject to max-product fuzzy relation constraints with discrete variables is studied. The major difficulty in solving this problem comes from nonconvexity caused by these product terms in the general geometric function and the max-product relation constraints. We proposed a 0-1 mixed integer linear programming model and adopted the branch-and-bound scheme to solve the problem. Numerical experiments confirm that the proposed solution method is effective.


2013 ◽  
Vol 4 (2) ◽  
pp. 39-46
Author(s):  
Pacharawan Suebsangin

We study a supply chain comprised of a manufacturer owning multiple production lines and a warehouse, and multiple retailers buying from the manufacturer. The manufacturer can choose whether to send products to the retailers directly from loading area using direct shipment or send the product to be stored at the warehouse. If the demand is satisfied from the warehouse, the company can choose the logistic strategy. The company can send the product from the warehouse to a retailer using a direct shipment mode (a truck only visits the retailer) or using milk run mode (a truck visits multiple retailers in a single trip). We develop a mixed integer programming model to find the optimal decisions for production quantities at each production line, the quantities of inventories at the loading area, the warehouse and the retailers, and the transportation strategies to deliver products to retailers in every period. We conduct numerical experiments and then analyze the results. Many managerial insights are drawn for practitioners. Several optimal transportation strategies are observed by mixing between a temporal demand aggregation strategy, the milk run strategy and the direct shipment strategy.


Sign in / Sign up

Export Citation Format

Share Document