Research on the Modeling of Tugboat Assignment Problem in Container Terminal

2012 ◽  
Vol 433-440 ◽  
pp. 1957-1961 ◽  
Author(s):  
Su Wang ◽  
Iko Kaku ◽  
Guo Yue Chen ◽  
Min Zhu

Tugboat is one kind of important equipment in container terminal to help ships for docking or leaving the berth. Tugboat assignment operation is one of the most important decision making problem because it has an important effect on the turnaround time of ships. In this paper, a mixed-integer programming model combined with scheduling rule is formulated for the Tugboat Assignment Problem (TAP). Then a solution method is provided to obtain the optimal solution of TAP problem. Finally, numerical experiments are executed to illustrate the utility of the model and to analyze the effects of the number and service capacity of tugboats on the turnaround time of ships.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Su Wang ◽  
Min Zhu ◽  
Ikou Kaku ◽  
Guoyue Chen ◽  
Mingya Wang

In container terminal, tugboat plays vital role in safety of ship docking. Tugboat assignment problem under a hybrid scheduling rule (TAP-HSR) is to determine the assignment between multiple tugboats and ships and the scheduling sequence of ships to minimize the turnaround time of ships. A mixed-integer programming model and the scheduling method are described for TAP-HSR problem. Then an improved discrete PSO (IDPSO) algorithm for TAP-HSR problem is proposed to minimize the turnaround time of ships. In particular, some new redefined PSO operators and the discrete updating rules of position and velocity are developed. The experimental results show that the proposed IDPSO can get better solutions than GA and basic discrete PSO.


Author(s):  
Lingxiao Wu ◽  
Shuaian Wang

This paper discusses tactical joint quay crane (QC) and yard crane (YC) deployment in container terminals. The deployments of QCs and YCs are critical for the efficiency of container terminals. Although they are closely intertwined, the deployments of QCs and YCs are usually sequential. This paper proposes a mixed-integer programming model for the joint deployment of QCs and YCs in container terminals. The objective of the model is to minimize the weighted vessel turnaround time and the weighted delayed workload for external truck service in yard blocks, both of great importance for a container terminal but rarely considered together in the literature. This paper proves that the studied problem is NP-hard in the strong sense. Case studies demonstrate that the proposed model can obtain better solutions than the sequential method. This paper also investigates the most effective combinations of QCs and YCs for a container terminal at various demand levels.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zejian Qin ◽  
Bingyuan Cao ◽  
Shu-Cherng Fang ◽  
Xiao-Peng Yang

The problem of geometric programming subject to max-product fuzzy relation constraints with discrete variables is studied. The major difficulty in solving this problem comes from nonconvexity caused by these product terms in the general geometric function and the max-product relation constraints. We proposed a 0-1 mixed integer linear programming model and adopted the branch-and-bound scheme to solve the problem. Numerical experiments confirm that the proposed solution method is effective.


2021 ◽  
Vol 13 (3) ◽  
pp. 1190
Author(s):  
Gang Ren ◽  
Xiaohan Wang ◽  
Jiaxin Cai ◽  
Shujuan Guo

The integrated allocation and scheduling of handling resources are crucial problems in the railway container terminal (RCT). We investigate the integrated optimization problem for handling resources of the crane area, dual-gantry crane (GC), and internal trucks (ITs). A creative handling scheme is proposed to reduce the long-distance, full-loaded movement of GCs by making use of the advantages of ITs. Based on this scheme, we propose a flexible crossing crane area to balance the workload of dual-GC. Decomposing the integrated problem into four sub-problems, a multi-objective mixed-integer programming model (MIP) is developed. By analyzing the characteristic of the integrated problem, a three-layer hybrid heuristic algorithm (TLHHA) incorporating heuristic rule (HR), elite co-evolution genetic algorithm (ECEGA), greedy rule (GR), and simulated annealing (SA) is designed for solving the problem. Numerical experiments were conducted to verify the effectiveness of the proposed model and algorithm. The results show that the proposed algorithm has excellent searching ability, and the simultaneous optimization scheme could ensure the requirements for efficiency, effectiveness, and energy-saving, as well as the balance rate of dual-GC.


2017 ◽  
Vol 5 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Peng Jia ◽  
Weilun Zhang ◽  
E Wenhao ◽  
Xueshan Sun

Abstract Due to the long operation cycle of maritime transportation and frequent fluctuations of the bunker fuel price, the refueling expenditure of a chartered ship at different time or ports of call make significant difference. From the perspective of shipping company, an optimal set of refueling schemes for a ship fleet operating on different voyage charter routes is an important decision. To address this issue, this paper presents an approach to optimize the refueling scheme and the ship deployment simultaneously with considering the trend of fuel price fluctuations. Firstly, an ARMA model is applied to forecast a time serials of the fuel prices. Then a mixed-integer nonlinear programming model is proposed to maximize total operating profit of the shipping company. Finally, a case study on a charter company with three bulk carriers and three voyage charter routes is conducted. The results show that the optimal solution saves the cost of 437,900 USD compared with the traditional refueling scheme, and verify the rationality and validity of the model.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6181
Author(s):  
Olga Chukhno ◽  
Nadezhda Chukhno ◽  
Giuseppe Araniti ◽  
Claudia Campolo ◽  
Antonio Iera ◽  
...  

In next-generation Internet of Things (IoT) deployments, every object such as a wearable device, a smartphone, a vehicle, and even a sensor or an actuator will be provided with a digital counterpart (twin) with the aim of augmenting the physical object’s capabilities and acting on its behalf when interacting with third parties. Moreover, such objects can be able to interact and autonomously establish social relationships according to the Social Internet of Things (SIoT) paradigm. In such a context, the goal of this work is to provide an optimal solution for the social-aware placement of IoT digital twins (DTs) at the network edge, with the twofold aim of reducing the latency (i) between physical devices and corresponding DTs for efficient data exchange, and (ii) among DTs of friend devices to speed-up the service discovery and chaining procedures across the SIoT network. To this aim, we formulate the problem as a mixed-integer linear programming model taking into account limited computing resources in the edge cloud and social relationships among IoT devices.


2013 ◽  
Vol 380-384 ◽  
pp. 4775-4781
Author(s):  
Ji Feng Qian ◽  
Xiao Ning Zhu ◽  
Zhan Dong Liu

In order to improve the efficiency of the handling operations equipment in container terminal, reduce the waiting time of container ship in Port, this paper researches the integrated scheduling of the different types of handling equipment in container terminal, considers the constraints of different handling equipment impact between each other, build a mixed integer programming model, presents a heuristic algorithm for the of the scheduling problem and gets the approximate solution. The results show that the integrated scheduling can effectively reduce the time of the ship staying in port, and improve the overall operating efficiency of the port.


1999 ◽  
Vol 121 (4) ◽  
pp. 701-708 ◽  
Author(s):  
Q. A. Sayeed ◽  
E. C. De Meter

Workpiece deformation during machining is a significant source of machined feature geometric error. This paper presents a linear, mixed integer programming model for determining the optimal locations of locator buttons, supports, and their opposing clamps for minimizing the affect of static workpiece deformation on machined feature geometric error. This model operates on discretized candidate regions as opposed to continuous candidate regions. In addition it utilizes a condensed FEA model of the workpiece in order to minimize model size and computation expense. This model has two advantages over existing nonlinear programming (NLP) formulations. The first is its ability to solve problems in which fixture elements can be placed over multiple regions. The second is that a global optimal solution to this model can be obtained using commercially available software.


2013 ◽  
Vol 446-447 ◽  
pp. 1334-1339 ◽  
Author(s):  
Seyed Hamidreza Sadeghian ◽  
Mohd Khairol Anuar Bin Mohd Ariffin ◽  
Say Hong Tang ◽  
Napsiah Binti Ismail

Automation of the processes at the quays of the world's large container ports is one of the answers to the required ever-increasing transshipment volumes within the same timeframe. For such purpose, using new generation of vehicles is unavoidable. One of the automatic vehicles that can be used in container terminals is Automated Lifting Vehicle (ALV). Integrated scheduling of handling equipments with quay cranes can increase the efficiency of automated transport systems in container. In this paper, an integrated scheduling of quay cranes and automated lifting vehicles with limited buffer space is formulated as a mixed integer linear programming model. This model minimizes the makespan of all the loading and unloading tasks for a pre-defined set of cranes in a scheduling problem.


TecnoLógicas ◽  
2019 ◽  
Vol 22 (44) ◽  
pp. 61-80 ◽  
Author(s):  
Juliana Jiménez ◽  
John E. Cardona ◽  
Sandra X. Carvajal

This article introduces a new mixed integer linear programming model that guarantees the optimal solution to the location and sizing problem of distributed photovoltaic generators in an isolated mini-grid. The solar radiation curves of each node in the mini-grids were considered, and the main objective was to minimize electric power losses in the operation of the system. The model is non-linear in nature because some restrictions are not linear. However, this article proposes the use of linearization techniques to obtain a linear model with a global optimal solution, which can be achieved through commercial solvers; CPLEX in this case. The proposed model was tested in an isolated 14-bus mini-grid, based on real data of topology, demand and generation adapted to a balanced operation. This model shows, as a result, the optimal location of photovoltaic generators and their optimal capacity produced by the maximum active power delivered at the maximum solar irradiation time of the region. It is also evident that the hybrid operation between small hydroelectric power plants and photovoltaic generation improves the network voltage profile and the electric power losses without the use power storage systems.


Sign in / Sign up

Export Citation Format

Share Document