scholarly journals Research on Cascading Failure Model of Urban Regional Traffic Network under Random Attacks

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ruru Xing ◽  
Qingfang Yang ◽  
Lili Zheng

For better describing the network cascading failure caused by random attacks such as traffic accidents, this paper introduces the ORNL-PSerc-Alaska (OPA) model to analyze the urban regional traffic network vulnerability. Firstly, the double-layer network model is built for analyzing the complex characteristics of the regional traffic network. Secondly, the cascading failure model is built to better describe the process of the network cascading failure under random attacks. Finally, by simulating the network failure process, the vulnerability of the traffic network will be pointed out, which provides the theoretical basis for avoiding the network cascading failure under random attacks.

Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 247
Author(s):  
Wendian Zhao ◽  
Yongjie Wang ◽  
Xinli Xiong ◽  
Yang Li

With the increase and diversification of network users, the scale of the inter-domain routing system is becoming larger and larger. Cascading failure analysis and modeling are of great significance to improve the security of inter-domain routing networks. To solve the problem that the propagation principle of cascading failure does not conform to reality, a Cascading Failure Model for inter-domain routing systems with the Recovery Feedback Mechanism (CFM-RFM) is proposed in this paper. CFM-RFM comprehensively considers the main factors that cause cascade failure. Based on two types of update message propagation mechanism and traffic redistribution, it simulates the cascading failure process. We found that under the action of the recovery feedback mechanism, the cascading failure process was accelerated, and the network did not quickly return to normal, but was rather quickly and extensively paralyzed. The average attack cost can be reduced by 38.1% when the network suffers the same damage.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 9493-9504
Author(s):  
Geng Zhang ◽  
Jiawen Shi ◽  
Shiyan Huang ◽  
Jiye Wang ◽  
Hao Jiang

Author(s):  
Sonnam Jo ◽  
Liang Gao ◽  
Feng Liu ◽  
Menghui Li ◽  
Zhesi Shen ◽  
...  

Robustness studies on integrated urban public transport networks have attracted growing attention in recent years due to the significant influence on the overall performance of urban transport system. In this paper, topological properties and robustness of a bus–subway coupled network in Beijing, composed of both bus and subway networks as well as their interactions, are analyzed. Three new models depicting cascading failure processes on the coupled network are proposed based on an existing binary influence modeling approach. Simulation results show that the proposed models are more accurate than the existing method in reflecting actual passenger flow redistribution in the cascading failure process. Moreover, the traffic load influence between nodes also plays a vital role in the robustness of the network. The proposed models and derived results can be utilized to improve the robustness of integrated urban public transport systems in traffic planning.


Author(s):  
Yuxin Zhong ◽  
Xuemin Zhang ◽  
Shaowei Huang ◽  
Shengwei Mei ◽  
Xiaopeng Yu ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1994
Author(s):  
Yanchen Liu ◽  
Minfang Peng ◽  
Xingle Gao ◽  
Haiyan Zhang

The prevention of cascading failures and large-scale power outages of power grids by identifying weak links has become one of the key topics in power systems research. In this paper, a vulnerability radius index is proposed to identify the initial fault, and a fault chain model of cascading failure is developed with probabilistic attributes to identify the set of fault chains that have a significant impact on the safe and stable operation of power grids. On this basis, a method for evaluating the vulnerability of transmission lines based on a multi-criteria decision analysis is proposed, which can quickly identify critical transmission lines in the process of cascading failure. Finally, the proposed model and method for identifying vulnerable lines during the cascading failure process is demonstrated on the IEEE-118 bus system.


Sign in / Sign up

Export Citation Format

Share Document