Power factor correction for nonlinear loads using sliding mode techniques

Author(s):  
E.J. Tacconi ◽  
I.A. Solsona ◽  
R.J. Mantz
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Joaquín Vaquero ◽  
Nimrod Vázquez ◽  
Ivan Soriano ◽  
Jeziel Vázquez

Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1873
Author(s):  
José Robinson Ortiz-Castrillón ◽  
Gabriel Eduardo Mejía-Ruiz ◽  
Nicolás Muñoz-Galeano ◽  
Jesús María López-Lezama ◽  
Juan Bernardo Cano-Quintero

This paper proposes a new sliding surface for controlling a Semi-Bridgeless Boost Converter (SBBC) which simultaneously performs Power Factor Correction (PFC) and DC bus regulation. The proposed sliding surface is composed of three terms: First, a normalized DC voltage error term controls the DC bus and rejects DC voltage disturbances. In this case, the normalization was performed for increasing system robustness during start-up and large disturbances. Second, an AC current error term implements a PFC scheme and guarantees fast current stabilization during disturbances. Third, an integral of the AC current error term increases stability of the overall system. In addition, an Adaptive Hysteresis Band (AHB) is implemented for keeping the switching frequency constant and reducing the distortion in zero crossings. Previous papers usually include the first and/or the second terms of the proposed sliding surface, and none consider the AHB. To be best of the author’s knowledge, the proposed Sliding Mode Control (SMC) is the first control strategy for SBBCs that does not require a cascade PI or a hybrid PI-Sliding Mode Control (PI-SMC) for simultaneously controlling AC voltage and DC current, which gives the best dynamic behavior removing DC overvoltages and responding fast to DC voltage changes or DC load current perturbations. Several simulations were carried out to compare the performance of the proposed surface with a cascade PI control, a hybrid PI-SMC and the proposed SMC. Furthermore, a stability analysis of the proposed surface in start-up and under large perturbations was performed. Experimental results for PI-SMC and SMC implemented in a SBBC prototype are also presented.


This paper presents multifunctional operation capability of three level cascade H bridge inverter for grid connected solar pv application. The solar panel and inverter are modelled for unbalance and nonlinear loads with three control techniques (pq,dq,cpt) and its performance is simulated in the MATLAB environment using SIMULINK and Sim Power System (SPS) toolboxes. The performance of inverter is evaluated for harmonics elimination, power factor correction apart from active and reactive power support to grid and nonlinear load .Performance of three level H bridge inverter is evaluated for both PV mode and STATCOM mode using three control techniques for distribution grid.


2018 ◽  
Vol 15 (18) ◽  
pp. 20180505-20180505
Author(s):  
Yeqin Wang ◽  
Yan Yang ◽  
Yuyan Chen ◽  
Tung Chin Pan ◽  
Chang Guo ◽  
...  

Author(s):  
D. E. Egorov ◽  
V. P. Dovgun ◽  
N. P. Boyarskaya ◽  
A. V. Jan ◽  
A. S. Slyusarev

THE PURPOSE. Мutipulse rectifiers are widely used as a nonlinear loads in industrial distribution systems. The advantage of mutipulse rectifiers is low harmonic emission and high power factor. However input currents of mutipulse rectifiers have a wide spectrum including characteristic and noncharacteristic harmonics. This has a negative impact on the power quality. Shunt capacitors are the simplest form of reactive power compensation in industrial power distribution systems. However power systems with nonlinear loads suffer from severe harmonic distortion due to the parallel resonance between capacitors and system inductance. Special compensating devices for reactive power compensation and correction of power system frequency response for resonances damping are necessary. METHODS. In this paper shunt compensating devices for power delivery systems with multipulse nonlinear loads are considered. Proposed devices are composed of 3-5 order parallel connected passive broadband filters. They provide power factor correction, voltage and current harmonics mitigation and resonance modes damping. A general broadband filter design procedure based on frequency and reactive power scaling of normalized filter parameters is developed. RESULTS. Characteristics of different compensating devices configurations using broadband passive filters are discussed. It is shown that broadband filtering devices enable compensation of fundamental frequency reactive power as well as mitigation of voltage harmonic level to values determined by Russian and international standards. Proposed devices have lower fundamental power losses in c omparing with known solutions. CONCLUSION. Proposed analytical design method is applicable to broadband filters of different orders.


Sign in / Sign up

Export Citation Format

Share Document