scholarly journals Design of Modular Power Management and Attitude Control Subsystems for a Microsatellite

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Anwar Ali ◽  
Shoaib Ahmed Khan ◽  
M. Usman Khan ◽  
Haider Ali ◽  
M. Rizwan Mughal ◽  
...  

The Electric Power System (EPS) and attitude control system (ACS) are the essential components of any satellite. EPS and ACS efficiency and compactness are substantial for the proper operation and performance of the satellite’s entire mission life. So, realizing the significance of EPS and ACS subsystems for any satellite, they have been assimilated and developed in modular forms focusing on efficiency and compactness. The EPS is comprised of three modules called the solar panel module (SPM), power conditioning module (PCM), and power distribution module (PDM) while the ACS has an embedded magnetorquer coil. For compactness and miniaturization purposes, the magnetorquer coil is embedded inside the SPM. The components used are commercial off-the-shelf (COTS) components emphasizing on their power efficiency, small dimensions, and weight. Latch-up protection systems have been designed and analyzed for CMOS-based COTS components, in order to make them suitable for space radioactive environment. The main design features are modularity, redundancy, power efficiency, and to avoid single component failure. The modular development of the EPS and ACS helps to reuse them for future missions, and as a result, the overall budget, development, and testing time and cost are reduced. A specific satellite mission can be achieved by reassembling the required subsystems.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fabian Orlowski-Feldhusen ◽  
Sebastian Kottmeier ◽  
Ansgar Heidecker ◽  
Olaf Mierheim ◽  
Oliver Kolakowski ◽  
...  

Eu:CROPIS (Euglena Combined Regenerative Organic Food Production in Space) is the first mission of DLR’s compact satellite program. The launch of Eu:CROPIS took place on December 3rd in 2018 on-board the Falcon 9 SSO-A mission. The satellite’s primary payload Eu:CROPIS features a biological experiment in the context of closed loop coupled life support systems. The Eu:CROPIS satellite mission uses spin stabilization along its Z -axis to provide defined acceleration levels for the primary and secondary payloads to simulate either a Moon or Mars gravity environment. For the payload performance, it is vital to achieve a minimum deviation between spacecraft Z -axis and the major moment of inertia (MoI) axis to minimize the offset of the envisaged acceleration levels. Specific moment of inertia ratios between the spin- and minor axes had to be maintained to allow the attitude control system to keep the satellite at a stable rotation despite environmental disturbances. This paper presents the adaptive and flexible trimming strategy applied during the flight model production, as well as the mass property measurement acceptance campaign and the respective results.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Junquan Li ◽  
Mark Post ◽  
Thomas Wright ◽  
Regina Lee

We present a satellite attitude control system design using low-cost hardware and software for a 1U CubeSat. The attitude control system architecture is a crucial subsystem for any satellite mission since precise pointing is often required to meet mission objectives. The accuracy and precision requirements are even more challenging for small satellites where limited volume, mass, and power are available for the attitude control system hardware. In this proposed embedded attitude control system design for a 1U CubeSat, pointing is obtained through a two-stage approach involving coarse and fine control modes. Fine control is achieved through the use of three reaction wheels or three magnetorquers and one reaction wheel along the pitch axis. Significant design work has been conducted to realize the proposed architecture. In this paper, we present an overview of the embedded attitude control system design; the verification results from numerical simulation studies to demonstrate the performance of a CubeSat-class nanosatellite; and a series of air-bearing verification tests on nanosatellite attitude control system hardware that compares the performance of the proposed nonlinear controller with a proportional-integral-derivative controller.


Author(s):  
Shinya FUJITA ◽  
Yuji SATO ◽  
Toshinori KUWAHARA ◽  
Yuji SAKAMOTO ◽  
Yoshihiko SHIBUYA ◽  
...  

1980 ◽  
Author(s):  
F. FLOYD ◽  
C. MUCH ◽  
N. SMITH ◽  
J. VERNAU ◽  
J. WOODS

2020 ◽  
Vol 28 (10) ◽  
pp. 2192-2202
Author(s):  
Feng WANG ◽  
◽  
Shi-bo NIU ◽  
Cheng-fei YUE ◽  
Fan WU ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4905
Author(s):  
Angel Porras-Hermoso ◽  
Daniel Alfonso-Corcuera ◽  
Javier Piqueras ◽  
Elena Roibás-Millán ◽  
Javier Cubas ◽  
...  

This paper presents the development of the UPMSat-2 sun sensor, from the design to on-orbit operation. It also includes the testing of the instrument, one of the most important tasks that needs to be performed to operate a sensor with precision. The UPMSat-2 solar sensor has been designed, tested, and manufactured at the Universidad Politécnica de Madrid (UPM) using 3D printing and COTS (photodiodes). The work described in this paper was carried out by students and teachers of the Master in Space Systems (Máster Universitario en Sistemas Espaciales—MUSE). The solar sensor is composed of six photodiodes that are divided into two sets; each set is held and oriented on the satellite by its corresponding support printed in Delrin. The paper describes the choice of components, the electrical diagram, and the manufacture of the supports. The methodology followed to obtain the response curve of each photodiode is simple and inexpensive, as it requires a limited number of instruments and tools. The selected irradiance source was a set of red LEDs and halogen instead of an AM0 spectrum irradiance simulator. Some early results from the UPMSat-2 mission have been analyzed in the present paper. Data from magnetometers and the attitude control system have been used to validate the data obtained from the sun sensor. The results indicate a good performance of the sensors during flight, in accordance with the data from the ground tests.


Sign in / Sign up

Export Citation Format

Share Document