scholarly journals Taguchi Robust Design for Optimizing Surface Roughness of Turned AISI 1045 Steel Considering the Tool Nose Radius and Coolant as Noise Factors

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Adel T. Abbas ◽  
Adham E. Ragab ◽  
Faycal Benyahia ◽  
Mahmoud S. Soliman

AISI 1045 has been widely used in many industrial applications requiring good wear resistance and strength. Surface roughness of produced components is a vital quality measure. A suitable combination of machining process parameters must be selected to guarantee the required roughness values. The appropriate parameters are generally defined based on ideal lab conditions since most of the researchers conduct their experiments in closed labs and ideal conditions. However, when repeating these experiments in industrial workshops, different results are obtained. Imperfect conditions such as the absence of a turning tool with definite specifications as shown in know-how “tool nose radius 0.4 mm” and its replacement with the closest existence tool “tool nose radius 0.8 mm” as well as the interruption of cutting fluid during work as a result of sudden failure in the coolant pump lead to the mentioned different lab-industrial conditions. These complications are common among normal problems that happened during the metal cutting process in realistic conditions and are called noise factors. In this paper, Taguchi robust design is used to select the optimum combination of the cutting speed, depth of cut, and feed rate to enhance the surface roughness of turned AISI 1045 steel bars while minimizing the effects of the two noise factors. The optimum parameters predicted by the developed model showed good agreement with the experimental results.

Author(s):  
Guilherme Roberto dos Santos Biasibetti ◽  
Rafael Menezes Nunes ◽  
Luiz Carlos de Cesaro Cavaler ◽  
Guilherme Vieira Braga Lemos ◽  
Alexandre da Silva Rocha

The main objective of this work was to evaluate the influence of turning parameters on the generation of residual stresses in AISI 1045 steel bars. Therefore, effects of four main parameters as feed rate, cutting velocity, tool nose radius, and rake angle were analyzed. Residual stresses investigation through X-ray diffraction (XRD) was carried out at different depths (surface, 5, 10, 20, 50, and 75 μm). As the samples showed distinct roughness patterns with variable amplitude and shape, and based in a previous work, samples were classified in two main groups accordingly with surface finishing (regular and irregular). The current results showed that feed rate and cutting speed played the major influence on residual stress distributions. Moreover, the tool nose radius affected surface residual stresses, whereas the rake angle did not significantly change it. Finally, samples could be divided in two residual stress groups, showing a direct relation of surface finishing quality and residual stresses.


2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


2015 ◽  
Vol 9 (3) ◽  
pp. 115-130
Author(s):  
H. Agus Suhartono

The aim of the study is to investigate and to prove that the fatigue failure of steel is initiated from the surface. Hence the preventif action of smoothening the surface that has been loaded by fatigue loading is very important. The specimen of AISI 1045 Steel is loaded by means of rotary bending fatigue. The fatigue loading will be interupted as the fatigue life reaching 50% of fatigue life and 75% of fatigue life. During the interuption the specimen will be grinded and polished, before tested completely until fatigue fracture occured. The fatigue life of each group of scpecimen based on the art of loading will be compared to the specimen tested by fatigue loading without interuption.The Miner rule is used to evaluated the test result. The influence of interuption and surface treatment is evaluated and analyzed. ABSTRAKTujuan penelitian ini adalah untuk menyelidiki dan membuktikan bahwa kegagalan kelelahan baja dimulai dari permukaan. Oleh karena itu tindakan pencegahan dengan memperhalus permukaan sangat penting untuk mencegah beban kelelahan baja. Spesimen dari AISI 1045 Steel dimuat dengan cara uji kelelahan lentur putar. Kelelahan pemuatan akan disela sebagai umur kelelahan mencapai 50% dari umur kelelahan dan 75% dari umur kelelahan. Selama gangguan lainnya yang spesimen akan digiling dan dipoles, sebelum diuji benar-benar sampai patah akibat kelelahan yang terjadi. Umur kelelahan dari setiap kelompok specimen diuji berdasarkan beban akan dibandingkan dengan spesimen oleh kelelahan bongkar tanpa aturan. The Miner rule digunakan untuk mengevaluasi hasil tes. Pengaruh gangguan lainnya dan perlakuan permukaan dievaluasi dan dianalisis. 


Author(s):  
Hongtao Ding ◽  
Yung C. Shin

Materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature, and microstructure during a machining process. This paper is concerned with prediction of the phase change effect on orthogonal cutting of American Iron and Steel Institute (AISI) 1045 steel based on a true metallo-thermomechanical coupled analysis. A metallo-thermomechanical coupled material model is developed and a finite element model (FEM) is used to solve the evolution of phase constituents, cutting temperature, chip morphology, and cutting force simultaneously using abaqus. The model validity is assessed using the experimental data for orthogonal cutting of AISI 1045 steel under various conditions, with cutting speeds ranging from 198 to 879 m/min, feeds from 0.1 to 0.3 mm, and tool rake angles from −7 deg to 5 deg. A good agreement is achieved in chip formation, cutting force, and cutting temperature between the model predictions and the experimental data.


Author(s):  
Reza Farshbaf Zinati ◽  
Mohammad Reza Razfar

The present research deals with a modified optimization algorithm of harmony search coupled with artificial neural networks (ANNs) to predict the optimal cutting condition. To this end, several experiments were carried out on AISI 1045 steel to attain required data for training of ANNs. Feed forward artificial neural network was utilized to create predictive models of surface roughness and cutting forces exploiting experimental data, and Modified Harmony Search algorithm (MHS) was used to find the constrained optimum of the surface roughness. Furthermore, Simple Harmony Search algorithm (SHS) and Genetic Algorithm (GA) were used for solving the same optimization problem to illustrate the capabilities of MHS algorithm. The obtained results demonstrate that MHS algorithm is more effective and authoritative in approaching the global solution than the SHS algorithm and GA.


Sign in / Sign up

Export Citation Format

Share Document