scholarly journals A Novel Biodegradable and Thermosensitive Poly(Ester-Amide) Hydrogel for Cartilage Tissue Engineering

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Tsai-Sheng Fu ◽  
Yu-Hong Wei ◽  
Po-Yuan Cheng ◽  
I-Ming Chu ◽  
Wei-Chuan Chen

Thermosensitive hydrogels are attractive alternative scaffolding materials for minimally invasive surgery through a simple injection and in situ gelling. In this study, a novel poly(ester-amide) polymer, methoxy poly(ethylene glycol)-poly(pyrrolidone-co-lactide) (mPDLA, P3L7) diblock copolymer, was synthesized and characterized for cartilage tissue engineering. A series of amphiphilic diblock copolymers was synthesized by ring-opening polymerization of mPEG 550, D,L-lactide, and 2-pyrrolidone. By dynamic light scattering analysis and tube-flipped-upside-down method, viscoelastic properties of the mPDLA diblock copolymer solution exhibited sol-gel transition behavior as a function of temperature. An in vitro degradation assay showed that degradation acidity was effectively reduced by introducing the 2-pyrrolidone monomer into the polyester hydrogel. Besides, mPDLA exhibited great biocompatibility in vitro for cell encapsulation due to a high swelling ratio. Moreover, cell viability and biochemical analysis proved that the mPDLA hydrogel presented a great chondrogenic response. Taken together, these results demonstrate that mPDLA hydrogels are promising injectable scaffolds potentially applicable to cartilage tissue engineering.

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1184
Author(s):  
Seongwon Lee ◽  
Joohee Choi ◽  
Jina Youn ◽  
Younghun Lee ◽  
Wooyoup Kim ◽  
...  

Hydrogel is in the spotlight as a useful biomaterial in the field of drug delivery and tissue engineering due to its similar biological properties to a native extracellular matrix (ECM). Herein, we proposed a ternary hydrogel of gellan gum (GG), silk fibroin (SF), and chondroitin sulfate (CS) as a biomaterial for cartilage tissue engineering. The hydrogels were fabricated with a facile combination of the physical and chemical crosslinking method. The purpose of this study was to find the proper content of SF and GG for the ternary matrix and confirm the applicability of the hydrogel in vitro and in vivo. The chemical and mechanical properties were measured to confirm the suitability of the hydrogel for cartilage tissue engineering. The biocompatibility of the hydrogels was investigated by analyzing the cell morphology, adhesion, proliferation, migration, and growth of articular chondrocytes-laden hydrogels. The results showed that the higher proportion of GG enhanced the mechanical properties of the hydrogel but the groups with over 0.75% of GG exhibited gelling temperatures over 40 °C, which was a harsh condition for cell encapsulation. The 0.3% GG/3.7% SF/CS and 0.5% GG/3.5% SF/CS hydrogels were chosen for the in vitro study. The cells that were encapsulated in the hydrogels did not show any abnormalities and exhibited low cytotoxicity. The biochemical properties and gene expression of the encapsulated cells exhibited positive cell growth and expression of cartilage-specific ECM and genes in the 0.5% GG/3.5% SF/CS hydrogel. Overall, the study of the GG/SF/CS ternary hydrogel with an appropriate content showed that the combination of GG, SF, and CS can synergistically promote articular cartilage defect repair and has considerable potential for application as a biomaterial in cartilage tissue engineering.


Biomaterials ◽  
2011 ◽  
Vol 32 (25) ◽  
pp. 5773-5781 ◽  
Author(s):  
Nandana Bhardwaj ◽  
Quynhhoa T. Nguyen ◽  
Albert C. Chen ◽  
David L. Kaplan ◽  
Robert L. Sah ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Focaroli ◽  
Gabriella Teti ◽  
Viviana Salvatore ◽  
Isabella Orienti ◽  
Mirella Falconi

Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons. The field of tissue engineering currently offers some of the most promising strategies for cartilage restoration, in which assorted biomaterials and cell-based therapies are combined to develop new therapeutic regimens for tissue replacement. The current study describes thein vitrobehavior of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated within calcium/cobalt (Ca/Co) alginate beads. These novel chondrogenesis-promoting scaffolds take advantage of the synergy between the alginate matrix and Co+2ions, without employing costly growth factors (e.g., transforming growth factor betas (TGF-βs) or bone morphogenetic proteins (BMPs)) to direct hADSC differentiation into cartilage-producing chondrocytes.


2009 ◽  
Vol 21 (03) ◽  
pp. 149-155 ◽  
Author(s):  
Hsu-Wei Fang

Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.


Author(s):  
Ana Belén Bonhome-Espinosa ◽  
Fernando Campos ◽  
Daniel Durand-Herrera ◽  
José Darío Sánchez-López ◽  
Sébastien Schaub ◽  
...  

2007 ◽  
Vol 15 ◽  
pp. B81
Author(s):  
G.M. Salzmann ◽  
P. Schmitz ◽  
M. Anton ◽  
M. Stoddart ◽  
S. Grad ◽  
...  

2006 ◽  
Vol 49 ◽  
pp. 189-196
Author(s):  
Soo Hyun Kim ◽  
Young Mee Jung ◽  
Sang Heon Kim ◽  
Young Ha Kim ◽  
Jun Xie ◽  
...  

To engineer cartilaginous constructs with a mechano-active scaffold and dynamic compression was performed for effective cartilage tissue engineering. Mechano-active scaffolds were fabricated from very elastic poly(L-lactide-co-ε-carprolactone)(5:5). The scaffolds with 85 % porosity and 300~500 μm pore size were prepared by a gel-pressing method. The scaffolds were seeded with chondrocytes and the continuous compressive deformation of 5% strain was applied to cell-polymer constructs with 0.1Hz to evaluate for the effect of dynamic compression for regeneration of cartilage. Also, the chondrocytes-seeded constructs stimulated by the continuous compressive deformation of 5% strain with 0.1Hz for 10 days and 24 days respectively were implanted in nude mice subcutaneously to investigate their biocompatibility and cartilage formation. From biochemical analyses, chondrogenic differentiation was sustained and enhanced significantly and chondrial extracellular matrix was increased through mechanical stimulation. Histological analysis showed that implants stimulated mechanically formed mature and well-developed cartilaginous tissue, as evidenced by chondrocytes within lacunae. Masson’s trichrome and Safranin O staining indicated an abundant accumulation of collagens and GAGs. Also, ECM in constructs was strongly immuno-stained with anti-rabbit collagen type II antibody. Consequently, the periodic application of dynamic compression can improve the quality of cartilaginous tissue formed in vitro and in vivo.


2010 ◽  
Vol 16 (1) ◽  
pp. 343-353 ◽  
Author(s):  
João T. Oliveira ◽  
Tírcia C. Santos ◽  
Luís Martins ◽  
Ricardo Picciochi ◽  
Alexandra P. Marques ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document