scholarly journals Study on Microstructure Effect of Carbon Black Particles in Filled Rubber Composites

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Li Hong Huang ◽  
Xiaoxiang Yang ◽  
Jianhong Gao

The cross sections of blended natural/styrene-butadiene (NSBR) composites filled with different volume fractions of carbon particles were observed using a Quanta 250 scanning electron microscope. In addition, the sizes and distributions of the carbon particles were analyzed using Nano Measurer. A two-dimensional representative volume element model (RVE) for a rubber composite reinforced with circular carbon particles was established, and the uniaxial tensile behaviors of polymer nanocomposites with different particle size distribution patterns were simulated using the ABAQUS software. The results showed the following. (1) For the random models, if the difference of particle size was larger and particle distance was closer, stress distribution would be denser as well as the stress concentration would become greater. However, if the difference of particle size was small, for the case of same particle volume fraction, the particle size has little influence on the macromechanical properties whether the average size is large or small. (2) The correlation between the volume fraction and distribution of the carbon particles revealed that when the volume fraction of carbon black particles was larger than 12%, clusters between carbon particles in the polymer nanocomposites could not be avoided and the modulus of the composites increased with an increase in the cluster number.

2021 ◽  
Author(s):  
Hussein Zbib

A coupled computational fluid dynamics (CFD) and discrete element method (DEM) model was developed to analyze the fluid-particle and particle-particle interactions in a 3D liquid-solid fluidized bed (LSFB). The CFD-DEM model was validated using the Electrical Resistance Tomography (ERT) experimental method. ERT was employed to measure the bed-averaged particle volume fraction (BPVF) of 0.002 m glass beads fluidized with water for various particle numbers and flow rates. It was found that simulations employing the combination of the Gidaspow drag model with pressure gradient and virtual mass forces provided the least percentage error between experiments and simulations. It was also found that contact parameters must be calibrated to account for the particles being wet. The difference between simulations and experiments was 4.74%. The CFD-DEM model was also employed alongside stability analysis to investigate the hydrodynamic behavior within the LSFB and the intermediate flow regime for all cases studied.


2021 ◽  
Author(s):  
Ruifeng CAO ◽  
Taotao WANG ◽  
Yuxuan ZHANG ◽  
Hui WANG

Improved heat transfer in composites consisting of guar gel matrix and randomly distributed glass microspheres is extensively studied to predict the effective thermal conductivity of composites using the finite element method. In the study, the proper and probabilistic three-dimensional random distribution of microspheres in the continuous matrix is automatically generated by a simple and efficient random sequential adsorption algorithm which is developed by considering the correlation of three factors including particle size, number of particles, and particle volume fraction controlling the geometric configuration of random packing. Then the dependences of the effective thermal conductivity of composite materials on some important factors are investigated numerically, including the particle volume fraction, the particle spatial distribution, the number of particles, the nonuniformity of particle size, the particle dispersion morphology and the thermal conductivity contrast between particle and matrix. The related numerical results are compared with theoretical predictions and available experimental results to assess the validity of the numerical model. These results can provide good guidance for the design of advanced microsphere reinforced composite materials.


2009 ◽  
Vol 87-88 ◽  
pp. 200-205 ◽  
Author(s):  
Yan He ◽  
Zhong Yin ◽  
Lian Xiang Ma ◽  
Jun Ping Song

Through measuring the thermal conductivities and tensile strength of nature rubbers filled with carbon black and comparing with each other, it is shown that the difference of carbon black particle size and the structure affects on the thermal conductivity and tensile strength of nature rubber. Thermal conductivities of carbon black-filled nature rubber are enhanced with the increase of volume fraction of filler; tensile strength of composite increases first and then decreases with the increase of carbon black volume fraction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Zhang ◽  
Jingyu Zhang ◽  
Haoyu Wang ◽  
Hongyang Wei ◽  
Changbing Tang ◽  
...  

A multi-scale finite element method is developed to simulate the irradiation process and postirradiation uniaxial tensile tests for metal-matrix composite fuels with representative volume elements (RVEs). The simulations of irradiation process are implemented under a wide range of burnup levels, with the irradiation effects on the mechanical constitutive relations of fuel particles and matrix taken into account comprehensively. The simulation results for the macroscopic postirradiation true stress/strain curves are obtained, excluding the irradiation-induced macroscopic deformations. The effects of particle fission density, temperature, and initial particle volume fraction are investigated and analyzed. The research results indicate that 1) a quasi-elastic stage appears during the postirradiation tension, which is mainly induced by the creation of high residual compressive stresses in the particles and matrix after irradiation; 2) with the increase of effective strains, new plastic deformations increase in the particles and matrix to result in the macroscale plastic stage; 3) the macroscale irradiation softening and hardening phenomena appear, which mainly stem from the weakened deformation resistance by the irradiation-induced plastic deformations in the matrix, the enlarged particle volume fraction after irradiation, and the irradiation hardening effects of metal matrix.


2012 ◽  
Vol 476-478 ◽  
pp. 2543-2547
Author(s):  
Qing Li ◽  
Xiao Xiang Yang

In this paper, Representative Volume Element with random distribution pattern has been built and applied to study and analyze the macro mechanical properties of the carbon black filled rubber composites by the micromechanical finite element method. And numerical simulations under uniaxial compression have been made by two-dimensional plane stress model. The periodic boundary conditions are imposed on each Representative Volume Element in order to ensure the compatibility of the deformation field. The dependence of the macroscopic stress-strain behavior and the effective elastic modulus of the composites, on particle distribution pattern, particle volume fraction and particle stiffness has been investigated and discussed. It is shown that the stiffness of the composite is increased considerably with the introduction of carbon black filler particles, and the effective elastic modulus of the composite is increased with the increase of the particle volume fraction.


2019 ◽  
Vol 19 (07) ◽  
pp. 1950078
Author(s):  
Recep Ekici ◽  
Vahdet Mesut Abaci ◽  
J. N. Reddy

In this study, the effects of micro-structural parameters such as particle volume fraction, size and random distribution of Al 6061/SiC particulate metal-matrix composite (MMC) beams on free vibration response and the active vibration control are investigated. For this purpose, numerical particle-reinforced MMC (PRMMC) beam specimens were modeled with 3D finite elements, and the cubic-shaped reinforcing SiC particles were randomly distributed in Al 6061 metal matrix similar to an actual micro-structure. The particle size and especially volume fraction play an important role on the natural frequencies of the smart PRMMCs although they have no effect on the mode shapes. The random particle distribution has minor effect on the natural frequencies of the smart PRMMCs. With the increase of the feedback control gain, both the vibration amplitude and the suppression time are reduced reasonably. Increasing the particle volume fraction induces an important reduction in the damping time and the vibration amplitude for both the controlled and uncontrolled damped vibrations. Finally, increasing the particle size decreases the vibration suppression capacity and increases the vibration amplitude and time slightly. Random particle distribution had no obvious effect on the uncontrolled and controlled vibrations.


2011 ◽  
Vol 17 (6) ◽  
pp. 872-878 ◽  
Author(s):  
Christopher D. Chan ◽  
Michelle E. Seitz ◽  
Karen I. Winey

AbstractThis article simulates highly overlapped projections of spherical particles that are distributed randomly in space. The size and number of the features in the projections are examined as well as how these features change with particle size and concentration. First, there are discernable features in projection even when particles overlap extensively, and the size of these discernable features is the expected size of an individual particle. Second, the number of features increases with specimen thickness at a rate of t0.543 when the specimen thickness is below a critical value and becomes independent of specimen thickness at higher thicknesses. A criterion is established for the critical thickness based on particle size and particle volume fraction. When the specimen thickness is known and smaller than the critical thickness, a single representative transmission electron microscopy (TEM) (or scanning TEM) image exhibiting extensive particle overlap can be used to determine the size and number density of the spherical particles.


Sign in / Sign up

Export Citation Format

Share Document