scholarly journals Measuring Occupants’ Behaviour for Buildings’ Dynamic Cosimulation

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Federica Naspi ◽  
Marco Arnesano ◽  
Francesca Stazi ◽  
Marco D’Orazio ◽  
Gian Marco Revel

Measuring and identifying human behaviours are key aspects to support the simulation processes that have a significant role in buildings’ (and cities’) design and management. In fact, layout assessments and control strategies are deeply influenced by the prediction of building performance. However, the missing inclusion of the human component within the building-related processes leads to large discrepancies between actual and simulated outcomes. This paper presents a methodology for measuring specific human behaviours in buildings and developing human-in-the-loop design applied to retrofit and renovation interventions. The framework concerns the detailed building monitoring and the development of stochastic and data-driven behavioural models and their coupling within energy simulation software using a cosimulation approach. The methodology has been applied to a real case study to illustrate its applicability. A one-year monitoring has been carried out through a dedicated sensor network for the data recording and to identify the triggers of users’ actions. Then, two stochastic behavioural models (i.e., one for predicting light switching and one for window opening) have been developed (using the measured data) and coupled within the IESVE simulation software. A simplified energy model of the case study has been created to test the behavioural approach. The outcomes highlight that the behavioural approach provides more accurate results than a standard one when compared to real profiles. The adoption of behavioural profiles leads to a reduction of the discrepancy with respect to real profiles up to 58% and 26% when simulating light switching and ventilation, respectively, in comparison to standard profiles. Using data-driven techniques to include the human component in the simulation processes would lead to better predictions both in terms of energy use and occupants’ comfort sensations. These aspects can be also included in building control processes (e.g., building management systems) to enhance the environmental and system management.

2021 ◽  
Author(s):  
Sangeeta Bhatia ◽  
Jack Wardle ◽  
Rebecca K Nash ◽  
Pierre Nouvellet ◽  
Anne Cori

Recent months have demonstrated that emerging variants may set back the global COVID-19 response. The ability to rapidly assess the threat of new variants in real-time is critical for timely optimisation of control strategies. We extend the EpiEstim R package, designed to estimate the time-varying reproduction number (Rt), to estimate in real-time the effective transmission advantage of a new variant compared to a reference variant. Our method can combine information across multiple locations and over time and was validated using an extensive simulation study, designed to mimic a variety of real-time epidemic contexts. We estimate that the SARS-CoV-2 Alpha variant is 1.46 (95% Credible Interval 1.44-1.47) and 1.29, (95% CrI 1.29-1.30) times more transmissible than the wild type, using data from England and France respectively. We further estimate that Beta and Gamma combined are 1.25 (95% CrI 1.24-1.27) times more transmissible than the wildtype (France data). All results are in line with previous estimates from literature, but could have been obtained earlier and more easily with our off-the-shelf open-source tool. Our tool can be used as an important first step towards quantifying the threat of new variants in real-time. Given the popularity of EpiEstim, this extension will likely be used widely to monitor the co-circulation and/or emergence of multiple variants of infectious pathogens.


Author(s):  
Jacobus Daniel van der Walt ◽  
Eric Scheepbouwer ◽  
Bryan Pidwerbesky ◽  
Brian Guo ◽  
Max Ferguson ◽  
...  

With the advancement of digital technology, the collection of pavement performance data has become commonplace. The improvement of tools to extract useful information from pavement databases has become a priority to justify expenditures. This paper presents a case study of PaveMD, a tool that integrates multi-dimensional data structures with a data-driven fuzzy approach to identify good performing pavement sections. Combining this tool with an innovative paradigm where the focus is on repeating success can bring additional value to existing pavement databases. The case study shows that PaveMD can identify pavement sections that are performing well by comparing performance measures for the New Zealand context. In this paper, PaveMD's development is described, and its implementation is showcased using data from the New Zealand Long-Term Pavement Performance (LTPP) database. It is recommended that this approach be further developed and extended to other infrastructure databases internationally.


2019 ◽  
Vol 10 (1) ◽  
pp. 18-38
Author(s):  
alireza arabameri ◽  
khalil rezaei ◽  
mojtaba yamani ◽  
kourosh shirani

Sign in / Sign up

Export Citation Format

Share Document