scholarly journals Modelling and Assertion-Based Verification of Run-Time Reconfigurable Designs Using Functional Programming Abstractions

2018 ◽  
Vol 2018 ◽  
pp. 1-25 ◽  
Author(s):  
Bahram N. Uchevler ◽  
Kjetil Svarstad

With the increasing design and production costs and long time-to-market for Application Specific Integrated Circuits (ASICs), implementing digital circuits on reconfigurable hardware is becoming a more common practice. A reconfigurable hardware combines the flexibility of the software domain with the high performance of the hardware domain and provides a flexible life cycle management for the product with a lower cost. A complete design and assertion-based verification flow for Run-Time Reconfigurable (RTR) designs using functional programming abstractions of Haskell are proposed in this article, in which partially reconfigurable hardware is used as the implementation platform. The proposed flow includes modelling of RTR designs in high levels of abstraction by using higher-order functions and polymorphism in Haskell, as well as their implementation on partially reconfigurable Field Programmable Gate Arrays (FPGAs). Assertion-based verification (ABV) is used as the verification approach which is integrated in the early stages of the design flow. Assertions can be used to verify specifications of designs in different verification methods such as simulation-based and formal verification. A partitioning algorithm is proposed for clustering the assertion-checker circuits to implement the verification circuits in a limited reconfigurable area in the target FPGA. The proposed flow is evaluated by using example designs on a Zynq FPGA as the hardware/software implementation platform.

Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 813-826
Author(s):  
Farid Uddin Ahmed ◽  
Zarin Tasnim Sandhie ◽  
Liaquat Ali ◽  
Masud H. Chowdhury

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1304
Author(s):  
Raquel Fernández de Cabo ◽  
David González-Andrade ◽  
Pavel Cheben ◽  
Aitor V. Velasco

Efficient power splitting is a fundamental functionality in silicon photonic integrated circuits, but state-of-the-art power-division architectures are hampered by limited operational bandwidth, high sensitivity to fabrication errors or large footprints. In particular, traditional Y-junction power splitters suffer from fundamental mode losses due to limited fabrication resolution near the junction tip. In order to circumvent this limitation, we propose a new type of high-performance Y-junction power splitter that incorporates subwavelength metamaterials. Full three-dimensional simulations show a fundamental mode excess loss below 0.1 dB in an ultra-broad bandwidth of 300 nm (1400–1700 nm) when optimized for a fabrication resolution of 50 nm, and under 0.3 dB in a 350 nm extended bandwidth (1350–1700 nm) for a 100 nm resolution. Moreover, analysis of fabrication tolerances shows robust operation for the fundamental mode to etching errors up to ± 20 nm. A proof-of-concept device provides an initial validation of its operation principle, showing experimental excess losses lower than 0.2 dB in a 195 nm bandwidth for the best-case resolution scenario (i.e., 50 nm).


2004 ◽  
Vol 22 (4) ◽  
pp. 1892-1895 ◽  
Author(s):  
Dawn V. Muyres ◽  
Paul F. Baude ◽  
Steven Theiss ◽  
Michael Haase ◽  
Tommie W. Kelley ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuang Hui ◽  
Ming Xiao ◽  
Daozhi Shen ◽  
Jiayun Feng ◽  
Peng Peng ◽  
...  

Abstract With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.


Sign in / Sign up

Export Citation Format

Share Document