scholarly journals Model-Based Optimization of Velocity Strategy for Lightweight Electric Racing Cars

2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Mirosław Targosz ◽  
Wojciech Skarka ◽  
Piotr Przystałka

The article presents a method for optimizing driving strategies aimed at minimizing energy consumption while driving. The method was developed for the needs of an electric powered racing vehicle built for the purposes of the Shell Eco-marathon (SEM), the most famous and largest race of energy efficient vehicles. Model-based optimization was used to determine the driving strategy. The numerical model was elaborated in Simulink environment, which includes both the electric vehicle model and the environment, i.e., the race track as well as the vehicle environment and the atmospheric conditions. The vehicle model itself includes vehicle dynamic model, numerical model describing issues concerning resistance of rolling tire, resistance of the propulsion system, aerodynamic phenomena, model of the electric motor, and control system. For the purpose of identifying design and functional features of individual subassemblies and components, numerical and stand tests were carried out. The model itself was tested on the research tracks to tune the model and determine the calculation parameters. The evolutionary algorithms, which are available in the MATLAB Global Optimization Toolbox, were used for optimization. In the race conditions, the model was verified during SEM races in Rotterdam where the race vehicle scored the result consistent with the results of simulation calculations. In the following years, the experience gathered by the team gave us the vice Championship in the SEM 2016 in London.

1993 ◽  
Author(s):  
Gabor Karsai ◽  
Samir Padalkar ◽  
Hubertus Franke ◽  
Janos Sztipanovits

2018 ◽  
Vol 2018 (13) ◽  
pp. 2700-2708 ◽  
Author(s):  
Lisha Guo ◽  
John Walton ◽  
Sovanna Tik ◽  
Zachary Scott ◽  
Keshab Raj Sharma ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5490
Author(s):  
Anna Maria Gargiulo ◽  
Ivan di Stefano ◽  
Antonio Genova

The exploration of planetary surfaces with unmanned wheeled vehicles will require sophisticated software for guidance, navigation and control. Future missions will be designed to study harsh environments that are characterized by rough terrains and extreme conditions. An accurate knowledge of the trajectory of planetary rovers is fundamental to accomplish the scientific goals of these missions. This paper presents a method to improve rover localization through the processing of wheel odometry (WO) and inertial measurement unit (IMU) data only. By accurately defining the dynamic model of both a rover’s wheels and the terrain, we provide a model-based estimate of the wheel slippage to correct the WO measurements. Numerical simulations are carried out to better understand the evolution of the rover’s trajectory across different terrain types and to determine the benefits of the proposed WO correction method.


Author(s):  
Alberto Parra ◽  
Dionisio Cagigas ◽  
Asier Zubizarreta ◽  
Antonio Joaquin Rodriguez ◽  
Pablo Prieto

Sign in / Sign up

Export Citation Format

Share Document