scholarly journals Comparative Analysis of the Gut Microbial Composition and Meat Flavor of Two Chicken Breeds in Different Rearing Patterns

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jing Sun ◽  
Yan Wang ◽  
Nianzhen Li ◽  
Hang Zhong ◽  
Hengyong Xu ◽  
...  

The objective of the study is to compare the effects of free-range (FR) and cage-range (CR) breeding on gut microbiota and flavor compounds of Caoke (C) and Partridge Shank chickens (Q). A total of 120 experimental chickens were assigned to FR group and CR group; each group contain both 30 Caoke chickens and 30 Partridge Shank chickens. At 154 d old, 12 chickens of each group were selected and their cecal contents were extracted and examined for the composition of gut microbiota by illumina sequencing of the V3 region of the 16S rDNA genes, and flavor compounds were analyzed through headspace-solid-phase microextraction (HS-SPME) method. The results showed that, except for acids, the amount of flavor substances in the FR group was higher than those in the CR group, especially the content of Hexanal and D-limonene. Meanwhile, the higher concentrations of carbonyls including (E,E)-2,4-decadienal, (E)-2-decenal, (E)-2-octenal, and pentanal were in the FR chicken meat, but the differences in concentrations compared with CR were not significant. High levels of ethyl hexanoate and β-ocimene were only detected in FR groups. The Firmicutes had the highest proportion of chicken cecal microbiota, whereas the Fusobacteria was only detected in the cecal samples of Q chicken in FR group. Actinobacteria was more prevalent in FR groups than in CR groups. Meanwhile, in Q chickens, the proportions of Bacteroidetes and Proteobacteria in FR group were higher than those in CR group. Using MG-RAST Subsystem Technology, we found that some genes were associated with the formation of precursors of flavor compounds or with the metabolism and degradation of aromatic compounds. Overall, CR and FR breeding influenced the gut microbiota and flavor compounds, potentially because of the changes in diet and living conditions.

2014 ◽  
Vol 10 (4) ◽  
pp. 809-820 ◽  
Author(s):  
Yuping Zhao ◽  
Tiantian Tian ◽  
Jiming Li ◽  
Baochun Zhang ◽  
Ying Yu ◽  
...  

Abstract The present study investigated the variations in main flavor compounds of a Chinese brandy during the second distillation process using headspace–solid-phase microextraction coupled with gas chromatography-mass spectrometry. A total of 97 volatile compounds involving esters, alcohols, aldehydes, ketones, furans, benzene derivatives and terpenes were quantified, and 28 components were identified as key ingredients. By monitoring the second distillation process, it was found that most ethyl esters (ethyl hexanoate, ethyl octanoate, etc.), alcohols (3-methylbutanol, etc.), terpenes (linalool, etc.), acetaldehyde and ionone all had higher values at the beginning of the distillation, but declined gradually or sharply along with the distillation process. However, two esters (ethyl lactate and diethyl succinate), acids (acetic acid, hexanoic acid), benzene derivatives (2-phenylethanol, etc.) and furan (furfural) showed lower levels when the distillation was just started, and gradually increased, accumulating as a large quantity at the end of the distillation.


2014 ◽  
Vol 881-883 ◽  
pp. 797-800
Author(s):  
He Liu ◽  
Jun Li ◽  
Ping Geng ◽  
Yu Tang He ◽  
Tao Ma

In this manuscript, flavor compounds development of Cheddar Cheese with addition of soybean pectin gel was investigated during ripening. A rapid and simple Solid-Phase Microextraction (SPME) procedure was used for identifying and classifying the volatile compounds. The result showed that addition of soybean pectin gel to cheese had similar flavor profiles with full-fat cheeses. Higher levels of acid volatile compounds and aldehydes were obtained in comparison with experimental cheese. Results simultaneously indicated that experimental cheeses contained high concentrations of volatile amine as soybean pectin gel promoting the volatile substances.


2015 ◽  
Vol 45 (2) ◽  
pp. 356-363 ◽  
Author(s):  
Gilberto Costa Braga ◽  
Adna Prado ◽  
Jair Sebastião da Silva Pinto ◽  
Severino Matias de Alencar

The profile of volatile compounds of yellow passion fruit juice was analyzed by solid phase microextraction headspace (HS-SPME) and optimized static headspace (S-HS) extraction techniques. Time, temperature, NaCl concentration and sample volume headspace equilibrium parameters was adjusted to the S-HS technique. The gaseous phase in the headspace of samples was collected and injected into a gas chromatograph coupled to a mass spectrometer. In the HS-SPME technique was identified 44 volatile compounds from the yellow passion fruit juice, but with S-HS only 30 compounds were identified. Volatile esters were majority in both techniques, being identified ethyl butanoate, ethyl hexanoate, (3z)-3-hexenyl acetate, hexyl acetate, hexyl butanoate and hexyl hexanoate. Aldehydes and ketones were not identified in S-HS, but were in HS-SPME. β-Pinene, p-cymene, limonene, (Z)-β-ocimene, (E)-β-ocimene, γ-terpinene, α-terpinolene and (E) -4,8-dimethyl-1, 3,7 - nonatriene terpenes were identified in both techniques. This study showed that the S-HS optimized extraction technique was effective to recovery high concentrations of the major volatile characteristics compounds in the passion fruit, such as ethyl butanoate and ethyl hexanoate, which can be advantageous due to the simplicity of the method.


2013 ◽  
Vol 781-784 ◽  
pp. 591-595
Author(s):  
Di Liu ◽  
Yu Shao ◽  
Xiao Hong Yang

By solid phase microextraction - Gas Chromatography - mass spectrometry (SPME-GC-MS) technique against acid and methionine bad blood (ASA-Met) model of the reaction products were identified, studied the effect of Fe2+ on the formation of flavor compounds in the model reaction. 27 flavour compounds of furan, pyrazine, thiophene, sulfur and other compounds, were identified, of which, sulfur-containing compounds such as aliphatic cyclic sulfides, sulfide, pyrazine is the main flavor components. Fe2+ was added to the model in the system, on one hand the about adding some sulfur compounds yield, pyrazine compounds significantly increase; on the other hand, Thiophenes significantly reduced compounds or even disappear. This shows that in the model reaction, Fe2+ promotes the thermal degradation of Met, at the same time, suggesting that Fe2+ as oxidant to promote NH3, NH3 and H2S to generate competitive reaction and ASA degradation products formed compounds containing nitrogen, resulting in reduced Thiophenes compounds yield.


Sign in / Sign up

Export Citation Format

Share Document