scholarly journals A Clone Detection Algorithm with Low Resource Expenditure for Wireless Sensor Networks

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Zhihua Zhang ◽  
Shoushan Luo ◽  
Hongliang Zhu ◽  
Yang Xin

Wireless sensor networks (WSNs) are facing the threats of clone attacks which can launch a variety of other attacks to control or damage the networks. In this paper, a novel distributed clone detection protocol with low resource expenditure is proposed for randomly deployed networks. The method consisting of witness chain establishment and clone detection route generation is implemented in the nonhotspot area of the network organized in a ring structure, which balances the resource consumption in the whole network. The witness chains and detection routes are in the centrifugal direction and circumferential direction, respectively, which can ensure the encounter of witnesses and detection routes of nodes with the same ID but different positions to detect clone attacks. Theoretical analysis demonstrates that the detection probability can be up to 1 with reliable witnesses. Moreover, both theoretical analysis and simulation results manifest that the proposed method can achieve better network lifetime and storage requirements with low resource expenditure and outperforms most methods in the literature.

Author(s):  
Manjunatha R C ◽  
Rekha K R ◽  
Nataraj K R

<p>Wireless sensor networks are usually left unattended and serve hostile environment, therefore can easily be compromised. With compromised nodes an attacker can conduct several inside and outside attacks. Node replication attack is one of them which can cause severe damage to wireless sensor network if left undetected. This paper presents fuzzy based simulation framework for detection and revocation of compromised nodes in wireless sensor network. Our proposed scheme uses PDR statistics and neighbor reports to determine the probability of a cluster being compromised. Nodes in compromised cluster are then revoked and software attestation is performed.Simulation is carried out on MATLAB 2010a and performance of proposed scheme is compared with conventional algorithms on the basis of communication and storage overhead. Simulation results show that proposed scheme require less communication and storage overhead than conventional algorithms.</p>


Author(s):  
Manjunatha R C ◽  
Rekha K R ◽  
Nataraj K R

<p>Wireless sensor networks are usually left unattended and serve hostile environment, therefore can easily be compromised. With compromised nodes an attacker can conduct several inside and outside attacks. Node replication attack is one of them which can cause severe damage to wireless sensor network if left undetected. This paper presents fuzzy based simulation framework for detection and revocation of compromised nodes in wireless sensor network. Our proposed scheme uses PDR statistics and neighbor reports to determine the probability of a cluster being compromised. Nodes in compromised cluster are then revoked and software attestation is performed.Simulation is carried out on MATLAB 2010a and performance of proposed scheme is compared with conventional algorithms on the basis of communication and storage overhead. Simulation results show that proposed scheme require less communication and storage overhead than conventional algorithms.</p>


2017 ◽  
Vol 13 (03) ◽  
pp. 113
Author(s):  
Wenjin Yu ◽  
Yong Li ◽  
Yuangeng Xu

<span style="font-family: 'Times New Roman',serif; font-size: 12pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">With the wide application of the wireless sensor network, the security of the sensor network is becoming increasingly important. In this paper, based on node ranging, a new intrusion node detection algorithm has been proposed for external pseudo-node detection in wireless sensor networks. The presence of the nodes under copying-attack and the pseudo-nodes in the network can be detected through inter-node ranging with appropriate use of various sensors of nodes themselves and comprehensive analysis of ranging results. Operating in a stand-alone or embedded manner, this method has remedied the defects in the traditional principle of attack detection. The simulation results show that the proposed method has excellent applicability in wireless sensor security detection.</span>


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Arunanshu Mahapatro ◽  
Pabitra Mohan Khilar

This paper presents a parametric fault detection algorithm which can discriminate the persistence (permanent, intermittent, and transient) of faults in wireless sensor networks. The main characteristics of these faults are the amount the fault appears. We adopt this state-holding time to discriminate transient from intermittent faults. Neighbor-coordination-based approach is adopted, where faulty sensor nodes are detected based on comparisons between neighboring nodes and dissemination of the decision made at each node. Simulation results demonstrate the robustness of the work at varying transient fault rate.


Author(s):  
Gang Wang

There are a large number of sensor nodes in wireless sensor network, whose main function is to process data scientifically, so that it can better sense and cooperate. In the network coverage, it can comprehensively collect the main information of the monitoring object, and send the monitoring data through short-range wireless communication to the gateway. Although there are many applications in WSNs, a multi-Target tracking and detection algorithm and the optimization problem of the wireless sensor networks are discussed in this paper. It can be obviously seen from the simulation results that this node cooperative program using particle CBMeMBer filtering algorithm can perfectly handle multi-target tracking, even if the sensor model is seriously nonlinear. Simulation results show that the tracking - forecasting data association scheme applying GM-CBMeMBer, which is proposed in this paper, runs well in identifying multiple target state, and can improve the estimation accuracy of multiple target state.


2014 ◽  
Vol 1022 ◽  
pp. 396-401
Author(s):  
Hang Xia Zhou ◽  
Chen Cui ◽  
Jia Jun Ye

Regarding the conventional DV-Hop algorithm easily caused big error in a network topology scenario, this paper proposes an improved DV-Hop localization algorithm comprehensive consideration of all anchor nodes average one-hop distance and normalized weighted, use anchor nodes as unknown nodes calculating error and use the error optimizing accuracy. Theoretical analysis and simulation results show that the proposed algorithm has better locating performance in locating precision and precision stability.


2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

Relay node placement in wireless sensor networks for constrained environment is a critical task due to various unavoidable constraints. One of the most important constraints is unpredictable obstacles. Handling obstacles during relay node placement is complicated because of complexity involved to estimate the shape and size of obstacles. This paper presents an Obstacle-resistant relay node placement strategy (ORRNP). The proposed solution not only handles the obstacles but also estimates best locations for relay node placement in the network. It also does not involve any additional hardware (mobile robots) to estimate node locations thus can significantly reduce the deployment costs. Simulation results show the effectiveness of our proposed approach.


Sign in / Sign up

Export Citation Format

Share Document