scholarly journals Study on the Nonlinear Characteristics of a Rotating Flexible Blade with Dovetail Interface Feature

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chaofeng Li ◽  
Zengchuang Shen ◽  
Bingfu Zhong ◽  
Bangchun Wen

A dynamic model is proposed in this paper for analyzing the nonlinear characteristics of a flexible blade. The dynamical equation of motion for a rotational flexible blade in a centrifugal force field is established based on the finite element method. A macro-stick-slip mechanical model of dry friction is established to simulate the constraint condition of the flexible blade. The combined motion of the external excitation and friction produces a piecewise linear vibration which is actually nonlinear. The numerical integration method is employed to calculate the vibration reduction characteristics of the nonlinear constrained rotating blade. The results show that the nonlinear dry friction force produced by the dovetail interface plays an important role in vibration reduction. And the effect of dry friction vibration reduction is significant when the rotating speed is slow or the friction coefficient is small. Besides, the magnitude of external excitation also has a great impact on the state of the friction. Therefore, some relevant experimental researches should be done in the future.

Author(s):  
Chaofeng Li ◽  
Zengchuang Shen ◽  
Zilin Chen ◽  
Houxin She

The vibration dissipation mechanism of the rotating blade with a dovetail joint is studied in this paper. Dry friction damping plays an indispensable role in the direction of vibration reduction. The vibration level is reduced by consuming the total energy of the turbine blade with the dry friction device on the blade-root in the paper. The mechanism of the vibration reduction is revealed by the variation of the friction force and the energy dissipation ratio of dry friction. In this paper, the flexible blade with a dovetail interface feature is discretized by using the spatial beam element based on the finite element theory. Then the classical Coulomb-spring friction model is introduced to obtain the dry friction model on the contact interfaces of the tenon-mortise structure. What is more, the effects of the system parameters (such as the rotating speed, the friction coefficient, the installation angle of the tenon) and the excitation level on blade damping characteristics are discussed, respectively. The results show that the variation of the system parameters leads to a significant change of damping characteristics of the blade. The variation of the tangential stiffness and the position of the external excitation will affect the nonlinear characteristics and vibration damping characteristics.


2016 ◽  
Vol 693 ◽  
pp. 318-323 ◽  
Author(s):  
Xin Liao ◽  
Jian Run Zhang

The interface of bolted joint commonly focuses on the research of non-linear damping and stiffness, which affect structural response. In the article, the non-linear damping model of bolted-joint interface is built, consisting of viscous damping and Coulomb friction. Energy balancing method is developed to identify the dry-friction parameter and viscous damping factor. The corresponding estimation equations are acquired when the input is harmonic excitation. Then, the vibration experiments with different bolted preloads are conducted, from which amplitudes in various input levels are used to work out the interface parameters. Also, the fitting curves of dry-friction parameters are also obtained. Finally, the results illustrate that the most interface of bolted joint in lower excitation levels occurs stick-slip motion, and the feasibility of the identification approach is demonstrated.


2011 ◽  
Vol 48-49 ◽  
pp. 773-778 ◽  
Author(s):  
Chun Rong Hua ◽  
Da Wei Dong ◽  
Bing Yan ◽  
Ming Heng Xu

A new method of online monitoring ICE powers based on the crankshaft angular vibration is proposed. It has deduced that when each cylinder works uniformly at a certain rotating speed, and the vth order angular vibration mode of crankshaft nears plane vibration mode such as “quasi-rigid body model” or “quasi-trapeziform model”, so a cubic polynomial can represent the relationship between the vth order angular vibration displacement amplitude of the crankshaft reference point and the engine powers, thereby the angular vibration of reference point could be used to online monitor engine powers. Through the simulation and experimental researches on a 6240 and a 4100 diesel engine, it shows that the engine powers fitted with the angular vibration displacement amplitudes of reference point are close to the measured or theoretical powers comparatively, and the maximum errors is only 2.95%, which verifies the feasibility and practicability of the method consequently.


1969 ◽  
Vol 36 (4) ◽  
pp. 743-749 ◽  
Author(s):  
C. C. Fu

This paper deals with asymptotic stability of an analytically derived, synchronous as well as nonsynchronous, steady-state solution of an impact system which exhibits piecewise linear characteristics connected with rock drilling. The exact solution, which assumes one impact for a given number of cycles of the external excitation, is derived, its asymptotic stability is examined, and ranges of parameters are determined for which asymptotic stability is assured. The theoretically predicted stability or instability is verified by a digital computer simulation.


Author(s):  
Chao Li ◽  
Binglong Lei ◽  
Yanhong Ma ◽  
Jie Hong

Abstract Typical turbofan engine-support-structure systems having a high thrust-to-weight ratio are light, and the structure primarily comprises a plate and shells. The local vibration response of the support structure is excessively large when different frequency loads are applied. A structural vibration response control method based on dry friction damping is proposed to control the excessive vibration response. A dry friction damper with dynamic suction was designed to enhance the damping characteristics of the rotor supporting structure system in the wide frequency domain, without sacrificing the dynamic stiffness of the structure. The system is designed to effectively control the vibration response of the supporting structure at the working-speed frequency. Through theoretical modeling and simulation analyses, the influence of friction contact and damper structure characteristics on the damping effect is described quantitatively. Furthermore, the design idea and the damping process of the supporting structure are described. The calculation results show that the contact friction of the dry friction damper can consume the vibration energy of the supporting frame. A reasonable design of the contact characteristics and geometric configuration parameters of the damper can further optimize the vibration-reduction effect, and thereby improve the vibration response control design of the supporting structure system of aeroengines.


Author(s):  
Gregory L. Altamirano ◽  
Meng-Hsuan Tien ◽  
Kiran D'Souza

Abstract Coulomb friction has an influence on the behavior of numerous mechanical systems. Coulomb friction systems or dry friction systems are nonlinear in nature. This nonlinear behavior requires complex and time demanding analysis tools to capture the dynamics of these systems. Recently, efforts have been made to develop efficient analysis tools able to approximate the forced response of systems with dry friction. The objective of this paper is to introduce a methodology that assists in these efforts. In this method, the piecewise-linear nonlinear response is separated into individual linear responses that are coupled together through compatibility constraint equations. The new method is demonstrated on a number of systems of varying complexity. The results obtained by the new method are validated through the comparison with results obtained by time integration. The computational savings of the new method is also discussed.


Author(s):  
Wayne E. Whiteman ◽  
Aldo A. Ferri

Abstract The dynamic behavior of a beam-like structure undergoing transverse vibration and subjected to a displacement-dependent dry friction force is examined. In Part I, the beam is modeled by a single mode while Part II considers multi-mode representations. The displacement dependence in each case is caused by a ramp configuration that allows the normal force across the sliding interface to increase linearly with slip displacement. The system is studied first by using first-order harmonic balance and then by using a time integration method. The stick-slip behavior of the system is also studied. Even though the only source of damping is dry friction, the system is seen to exhibit “viscous-like” damping characteristics. A strong dependence of the equivalent natural frequency and damping ratio on the displacement amplitude is an interesting result. It is shown that for a given set of parameter values, an optimal ramp angle exists that maximizes the equivalent damping ratio. The appearance of two dynamic response solutions at certain system and forcing parameter values is also seen. Results suggest that the overall characteristics of mechanical systems may be improved by properly configuring frictional interfaces to allow normal forces to vary with displacement.


Sign in / Sign up

Export Citation Format

Share Document