scholarly journals Photocatalytic Degradation and Hydrogen Production of TiO2/Carbon Fiber Composite Using Bast as a Carbon Fiber Source

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Guomei Tang ◽  
Asim Abas ◽  
Shanpeng Wang

TiO2/carbon fiber composite is achieved by loading TiO2 nanoparticles on biomass carbon fiber, which originates from the carbonized natural bast. The carbonized process and the loading amount of TiO2 are researched in detail. It is found that the carbonized bast fiber shows robust adsorption characteristics for TiO2 nanoparticles in aqueous dispersion, and TiO2 nanoparticles with ~15 wt.% in total weight are uniformly loaded onto the fiber surface. The photocatalytic properties of TiO2/carbon fiber composite are evaluated by photocatalytic degradation of rhodamine B and water splitting for hydrogen production. The results indicate that 90% RhB molecules could be attacked in 60 min under UV light irradiation, and the hydrogen production rate of water splitting is up to 338.51 μmol/h. The highlight is that TiO2/carbon fiber composite is easy to be recycled due to the incorporation of macroscopical biomass carbon fiber.

2008 ◽  
Author(s):  
Andrew Littlefield ◽  
Edward Hyland ◽  
Jack Keating

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1319 ◽  
Author(s):  
Ran Li ◽  
Huiping Lin ◽  
Piao Lan ◽  
Jie Gao ◽  
Yan Huang ◽  
...  

Lightweight electromagnetic interference shielding cellulose foam/carbon fiber composites were prepared by blending cellulose foam solution with carbon fibers and then freeze drying. Two kinds of carbon fiber (diameter of 7 μm) with different lengths were used, short carbon fibers (SCF, L/D = 100) and long carbon fibers (LCF, L/D = 300). It was observed that SCFs and LCFs built efficient network structures during the foaming process. Furthermore, the foaming process significantly increased the specific electromagnetic interference shielding effectiveness from 10 to 60 dB. In addition, cellulose/carbon fiber composite foams possessed good mechanical properties and low thermal conductivity of 0.021–0.046 W/(m·K).


Sign in / Sign up

Export Citation Format

Share Document