scholarly journals Development of a Cell-Based High-Throughput Screening Assay to Identify Porcine Host Defense Peptide-Inducing Compounds

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zhuo Deng ◽  
Jing Wang ◽  
Wentao Lyu ◽  
Xuwen Wieneke ◽  
Robert Matts ◽  
...  

Novel alternatives to antibiotics are needed for the swine industry, given increasing restrictions on subtherapeutic use of antibiotics. Augmenting the synthesis of endogenous host defense peptides (HDPs) has emerged as a promising antibiotic-alternative approach to disease control and prevention. To facilitate the identification of HDP inducers for swine use, we developed a stable luciferase reporter cell line, IPEC-J2/PBD3-luc, through permanent integration of a luciferase reporter gene driven by a 1.1 kb porcine β-defensin 3 (PBD3) gene promoter in porcine IPEC-J2 intestinal epithelial cells. Such a stable reporter cell line was employed in a high-throughput screening of 148 epigenetic compounds and 584 natural products, resulting in the identification of 41 unique hits with a minimum strictly standardized mean difference (SSMD) value of 3.0. Among them, 13 compounds were further confirmed to give at least a 5-fold increase in the luciferase activity in the stable reporter cell line, with 12 being histone deacetylase (HDAC) inhibitors. Eight compounds were subsequently observed to be comparable to sodium butyrate in inducing PBD3 mRNA expression in parental IPEC-J2 cells in the low micromolar range. Six HDAC inhibitors including suberoylanilide hydroxamine (SAHA), HC toxin, apicidin, panobinostat, SB939, and LAQ824 were additionally found to be highly effective HDP inducers in a porcine 3D4/31 macrophage cell line. Besides PBD3, other HDP genes such as PBD2 and cathelicidins (PG1–5) were concentration-dependently induced by those compounds in both IPEC-J2 and 3D4/31 cells. Furthermore, the antibacterial activities of 3D4/31 cells were augmented following 24 h exposure to HDAC inhibitors. In conclusion, a cell-based high-throughput screening assay was developed for the discovery of porcine HDP inducers, and newly identified HDP-inducing compounds may have potential to be developed as alternatives to antibiotics for applications in swine and possibly other animal species.

2021 ◽  
Author(s):  
Eugenia Fraile-Bethencourt ◽  
Marie H Foss ◽  
Dylan Nelson ◽  
Sanjay V Malhotra ◽  
Sudarshan Anand

Enhancing the immune microenvironment in cancer by targeting the nucleic acid sensors is becoming a potent therapeutic strategy. Among the nucleic acid sensors, activation of the RNA sensor Retinoic Acid-inducible Gene (RIG-I) using small hairpin RNAs has been shown to elicit powerful innate and adaptive immune responses. Given the challenges inherent in pharmacokinetics and delivery of RNA based agonists, we set out to discover small molecule agonists of RIG-I using a cell-based assay. To this end, we established and validated a robust high throughput screening assay based on a commercially available HEK293 reporter cell line with a luciferase reporter downstream of tandem interferon stimulated gene 54 (ISG54) promoter elements. We first confirmed that the luminescence in this cell line is dependent on RIG-I and the interferon receptor using a hairpin RNA RIG-I agonist. We established a 96-well and a 384-well format HTS based on this cell line and performed a proof-of-concept screen using an FDA approved drug library of 1200 compounds. Surprisingly, we found two HDAC inhibitors Entinostat, Mocetinostat and the PLK1 inhibitor Volasertib significantly enhanced ISG-luciferase activity. This luminescence was substantially diminished in the null reporter cell line indicating the increase in signaling was dependent on RIG-I expression. Treatment of tumor cell lines with Entinostat, Mocetinostat or Volasertib induced interferon signature genes and increased RIG-I induced cell death in a mammary carcinoma cell line. Taken together, our data indicates an unexpected role for HDAC1,-3 inhibitors and PLK1 inhibitors in enhancing RIG-I signaling and highlight potential opportunities for therapeutic combinations.


2015 ◽  
Vol 10 (1) ◽  
pp. 55 ◽  
Author(s):  
Jasmina Hodzic ◽  
Ilse Dingjan ◽  
Mariëlle Maas ◽  
Ida H van der Meulen-Muileman ◽  
Renee X de Menezes ◽  
...  

2019 ◽  
Vol 116 (39) ◽  
pp. 19541-19551
Author(s):  
Meade Haller ◽  
Yan Yin ◽  
Liang Ma

Failure of embryo implantation accounts for a significant percentage of female infertility. Exquisitely coordinated molecular programs govern the interaction between the competent blastocyst and the receptive uterus. Decidualization, the rapid proliferation and differentiation of endometrial stromal cells into decidual cells, is required for implantation. Decidualization defects can cause poor placentation, intrauterine growth restriction, and early parturition leading to preterm birth. Decidualization has not yet been systematically studied at the genetic level due to the lack of a suitable high-throughput screening tool. Herein we describe the generation of an immortalized human endometrial stromal cell line that uses yellow fluorescent protein under the control of the prolactin promoter as a quantifiable visual readout of the decidualization response (hESC-PRLY cells). Using this cell line, we performed a genome-wide siRNA library screen, as well as a screen of 910 small molecules, to identify more than 4,000 previously unrecognized genetic and chemical modulators of decidualization. Ontology analysis revealed several groups of decidualization modulators, including many previously unappreciated transcription factors, sensory receptors, growth factors, and kinases. Expression studies of hits revealed that the majority of decidualization modulators are acutely sensitive to ovarian hormone exposure. Gradient treatment of exogenous factors was used to identify EC50 values of small-molecule hits, as well as verify several growth factor hits identified by the siRNA screen. The high-throughput decidualization reporter cell line and the findings described herein will aid in the development of patient-specific treatments for decidualization-based recurrent pregnancy loss, subfertility, and infertility.


Sign in / Sign up

Export Citation Format

Share Document