scholarly journals Outsourcing Set Intersection Computation Based on Bloom Filter for Privacy Preservation in Multimedia Processing

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hongliang Zhu ◽  
Meiqi Chen ◽  
Maohua Sun ◽  
Xin Liao ◽  
Lei Hu

With the development of cloud computing, the advantages of low cost and high computation ability meet the demands of complicated computation of multimedia processing. Outsourcing computation of cloud could enable users with limited computing resources to store and process distributed multimedia application data without installing multimedia application software in local computer terminals, but the main problem is how to protect the security of user data in untrusted public cloud services. In recent years, the privacy-preserving outsourcing computation is one of the most common methods to solve the security problems of cloud computing. However, the existing computation cannot meet the needs for the large number of nodes and the dynamic topologies. In this paper, we introduce a novel privacy-preserving outsourcing computation method which combines GM homomorphic encryption scheme and Bloom filter together to solve this problem and propose a new privacy-preserving outsourcing set intersection computation protocol. Results show that the new protocol resolves the privacy-preserving outsourcing set intersection computation problem without increasing the complexity and the false positive probability. Besides, the number of participants, the size of input secret sets, and the online time of participants are not limited.

Author(s):  
Akashdeep Bhardwaj

This article describes how the rise of fog computing to improve cloud computing performance and the acceptance of smart devices is slowly but surely changing our future and shaping the computing environment around us. IoT integrated with advances in low cost computing, storage and power, along with high speed networks and big data, supports distributed computing. However, much like cloud computing, which are under constant security attacks and issues, distributed computing also faces similar challenges and security threats. This can be mitigated to a great extent using fog computing, which extends the limits of Cloud services to the last mile edge near to the nodes and networks, thereby increasing the performance and security levels. Fog computing also helps increase the reach and comes across as a viable solution for distributed computing. This article presents a review of the academic literature research work on the Fog Computing. The authors discuss the challenges in Fog environment and propose a new taxonomy.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2659 ◽  
Author(s):  
Yinghui Zhang ◽  
Jiangfan Zhao ◽  
Dong Zheng ◽  
Kaixin Deng ◽  
Fangyuan Ren ◽  
...  

As an extension of cloud computing, fog computing has received more attention in recent years. It can solve problems such as high latency, lack of support for mobility and location awareness in cloud computing. In the Internet of Things (IoT), a series of IoT devices can be connected to the fog nodes that assist a cloud service center to store and process a part of data in advance. Not only can it reduce the pressure of processing data, but also improve the real-time and service quality. However, data processing at fog nodes suffers from many challenging issues, such as false data injection attacks, data modification attacks, and IoT devices’ privacy violation. In this paper, based on the Paillier homomorphic encryption scheme, we use blinding factors to design a privacy-preserving data aggregation scheme in fog computing. No matter whether the fog node and the cloud control center are honest or not, the proposed scheme ensures that the injection data is from legal IoT devices and is not modified and leaked. The proposed scheme also has fault tolerance, which means that the collection of data from other devices will not be affected even if certain fog devices fail to work. In addition, security analysis and performance evaluation indicate the proposed scheme is secure and efficient.


Author(s):  
Manasa Jonnagadla

Abstract: Cloud computing provides streamlined tools for exceptional business efficiency. Cloud service providers typically offer two types of plans: reserved and on-demand. Restricted policies provide low-cost long-term contracting, while order contracts are expensive and ready for short periods. Cloud resources must be delivered wisely to meet current customer demands. Many current works rely on low-cost resource-reserved strategies, which may be under- or over-provisioning. Resource allocation has become a difficult issue due to unfairness causing high availability costs and cloud demand variability. That article suggests a hybrid approach to allocating cloud services to complex customer orders. The strategy was built in two stages: accommodation stages and a flexible structure. By treating each step as an optimization problem, we can reduce the overall implementation cost while maintaining service quality. Due to the uncertain nature of cloud requests, we set up a stochastic Optimization-based approach. Our technique is used to assign individual cloud resources and the results show its effectiveness. Keywords: Cloud computing, Resource allocation, Demand


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1339
Author(s):  
Yunlu Cai ◽  
Chunming Tang ◽  
Qiuxia Xu

A two-party private set intersection allows two parties, the client and the server, to compute an intersection over their private sets, without revealing any information beyond the intersecting elements. We present a novel private set intersection protocol based on Shuhong Gao’s fully homomorphic encryption scheme and prove the security of the protocol in the semi-honest model. We also present a variant of the protocol which is a completely novel construction for computing the intersection based on Bloom filter and fully homomorphic encryption, and the protocol’s complexity is independent of the set size of the client. The security of the protocols relies on the learning with errors and ring learning with error problems. Furthermore, in the cloud with malicious adversaries, the computation of the private set intersection can be outsourced to the cloud service provider without revealing any private information.


Author(s):  
Pappu Sowmya ◽  
R Kumar

Cloud computing is one of the trending technologies that provide boundless virtualized resources to the internet users as an important services through the internet, while providing the privacy and security. By using these cloud services, internet users get many parallel computing resources at low cost. It predicted that till 2016, revenues from the online business management spent $4 billion for data storage. Cloud is an open source platform structure, so it is having more chances to malicious attacks. Privacy, confidentiality, and security of stored data are primary security challenges in cloud computing. In cloud computing, ‘virtualization’ is one of the techniques dividing memory into different blocks. In most of the existing systems there is only single authority in the system to provide the encrypted keys. To fill the few security issues, this paper proposed a novel authenticated trust security model for secure virtualization system to encrypt the files. The proposed security model achieves the following functions: 1) allotting the VSM(VM Security Monitor) model for each virtual machine; 2) providing secret keys to encrypt and decrypt information by symmetric encryption.The contribution is a proposed architecture that provides a workable security that a cloud service provider can offer to its consumers. Detailed analysis and architecture design presented to elaborate security model.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Osuolale A. Festus ◽  
Adewale O. Sunday ◽  
Alese K. Boniface

The introduction of computers has been a huge plus to human life in its entirety because it provides both the world of business and private an easy and fast means to process, generate and exchange information. However, the proliferation of networked devices, internet services and the amount of data being generated frequently is enormous. This poses a major challenge, to the procurement cost of high performing computers and servers capable of processing and housing the big data. This called for the migration of organizational and/or institutional data upload to the cloud for highlevel of productivity at a low cost. Therefore, with high demand for cloud services and resources by users who migrated to the cloud, cloud computing systems have experienced an increase in outages or failures in real-time cloud computing environment and thereby affecting its reliability and availability. This paper proposes and simulates a system comprising four components: the user, task controller, fault detector and fault tolerance layers to mitigate the occurrence of fault combining checkpointing and replication techniques using cloud simulator (CloudSim).


2018 ◽  
Vol 1 (1) ◽  
pp. 35-49 ◽  
Author(s):  
Akashdeep Bhardwaj

This article describes how the rise of fog computing to improve cloud computing performance and the acceptance of smart devices is slowly but surely changing our future and shaping the computing environment around us. IoT integrated with advances in low cost computing, storage and power, along with high speed networks and big data, supports distributed computing. However, much like cloud computing, which are under constant security attacks and issues, distributed computing also faces similar challenges and security threats. This can be mitigated to a great extent using fog computing, which extends the limits of Cloud services to the last mile edge near to the nodes and networks, thereby increasing the performance and security levels. Fog computing also helps increase the reach and comes across as a viable solution for distributed computing. This article presents a review of the academic literature research work on the Fog Computing. The authors discuss the challenges in Fog environment and propose a new taxonomy.


Author(s):  
Selasi Kwame Ocansey ◽  
Charles Fynn Oduro

When cloud clients outsource their database to the cloud, they entrust management operations to a cloud service provider who is expected to answer the client’s queries on the cloud where database is located. Efficient techniques can ensure critical requirements for outsourced data’s integrity and authenticity. A lightweight privacy preserving verifiable scheme for outsourcingdatabase securely is proposed, our scheme encrypts data before outsourcing and returned query results are verified with parameters of correctness and completeness. Our scheme is projected on lightweight homomorphic encryption technique and bloom filter which are efficiently authenticated to guarantee the outsourced database’s integrity, authenticity, and confidentiality. An ordering challenge technique is proposed for verifying top-k query results. We conclude by detailing our analysis of security proofs, privacy, verifiability and the performance efficiency of our scheme. Our proposed scheme’s proof and evaluation analysis show its security and efficiency for practical deployment. We also evaluate our scheme’s performances over two UCI data sets.


2021 ◽  
Author(s):  
Vishesh Kumar Tanwar ◽  
Balasubramanian Raman ◽  
Amitesh Singh Rajput ◽  
Rama Bhargava

<div>The key benefits of cloud services, such as low cost, access flexibility, and mobility, have attracted users worldwide to utilize the deep learning algorithms for developing computer vision tasks. Untrusted third parties maintain these cloud servers, and users are always concerned about sharing their confidential data with them. In this paper, we addressed these concerns for by developing SecureDL, a privacy-preserving image recognition model for encrypted data over cloud. Additionally, we proposed a block-based image encryption scheme to protect images’ visual information. The scheme constitutes an order-preserving permutation ordered binary number system and pseudo-random matrices. The encryption scheme is proved to be secure in a probabilistic viewpoint and through various cryptographic attacks. Experiments are performed for several image recognition datasets, and the achieved recognition accuracy for encrypted data is close with non-encrypted data. SecureDL overcomes the storage, and computational overheads occurred in fully-homomorphic and multi-party computations based secure recognition schemes. </div>


Sign in / Sign up

Export Citation Format

Share Document